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Abstract

Development of treatments for rare diseases is challenging due to the limited number

of patients available. Since a substantial proportion of all patients may be included in

the trial, the goal is to treat those patients within the trial as effectively as possible.

This motivates the use of response-adaptive designs which skew allocation towards the

better performing treatment(s) but often reduce the statistical power. Consequently,

this raises the question of how to allocate patients in order to attain a compromise

between these conflicting objectives. This can be formalised as a multi-armed bandit

problem with the dynamic programming and Gittins index solutions considered here.

Dynamic programming is utilised to propose a randomised design for a two-arm

sequential trial with binary outcomes. This design maximises the total number of

patient successes and penalises if a minimum number of patients are not allocated to

each treatment so that sufficient power is achieved. Moreover, the treatment effect

estimator exhibits a very small bias and mean squared error. This design is shown to

be fairly robust to delays, with only a slight reduction in patient benefit. Solutions

to ameliorate this loss are therefore proposed, for both the fixed and random delay

settings.
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A design based upon the Gittins index — which is randomised and orientated to-

wards a patient benefit objective — is proposed for normal outcomes, illustrated in the

multi-armed setting where patients are allocated in blocks. Patient benefit gains are

observed when using this design with a continuous outcome instead of dichotomising

it. These gains persist even when missing data is imputed.

Throughout, we compare the proposed designs to alternative designs via extensive

simulations in a range of scenarios.

This thesis helps bridge the gap between theory and practice by addressing key

issues that have prevented bandit models from being implemented in practice.
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Chapter 1

Introduction and Motivation

Before any new medical treatment is made available to the public, clinical trials must

be undertaken in humans to ensure that the treatment is safe and efficacious (Pocock,

1983). Such trials are usually divided into the following phases. Phase I trials gen-

erally involve a small number of healthy volunteers, but in some circumstances, e.g.

when testing treatments for a fatal disease, these may be patients who have exhausted

other treatment options. The focus of phase I trials is on the study of the pharma-

cokinetics (i.e. the movement of the treatment through the body), pharmacodynamics

(i.e. the treatment’s effect on the body) and toxicity of a treatment, with the primary

objective being to establish a tolerable dose range. Phase II trials (and onwards) are

performed on patients that have the disease of interest. They are initial efficacy stud-

ies aimed at determining the dose, and frequency of dosing, required to successfully

treat patients (Peace and Chen, 2010). If a treatment is indicated as effective during

phase II, then it proceeds to phase III. These are large-scale, costly confirmatory trials

which usually compare the experimental treatment to a control (standard treatment

or placebo), with the primary objective of confirming the efficacy of the treatment.

After the treatment has been approved, its long-term effects in the wider population

are monitored during phase IV trials.

1
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In March 2004, the United States Food and Drug Administration (FDA) released

the landmark report, Innovation/Stagnation: Challenge and Opportunity on the Crit-

ical Path to New Medical Products (U.S. Food and Drug Administration, 2004), ex-

pressing concern over the slowdown, instead of the expected acceleration, in innovative

treatments being submitted to the FDA for approval despite advances in biomedical

science. It highlights “an urgent need for improvement in the efficiency and effec-

tiveness of the clinical trial process, including improved trial design” and in par-

ticular, “much more attention and creativity need to be applied to disease-specific

trial design”. Consequently, the FDA released a follow-up document, the Critical

Path Opportunities Report (U.S. Food and Drug Administration, 2006), indicating

that biomarker development and streamlining clinical trials are the two most impor-

tant areas for improving medical product development. Streamlining clinical trials in-

cludes advancing innovative trial designs, such as adaptive designs (Chow and Chang,

2012), which provides the fundamental motivation and underlying theme throughout

this thesis.

Adaptive designs have gained increasing popularity amongst researchers, industry

and regulatory bodies (Lipsky and Lewis, 2013). In particular, this has been demon-

strated by the FDA’s recent release of an updated draft guidance on Adaptive Designs

for Clinical Trials of Drugs and Biologics (U.S. Food and Drug Administration, 2018)

as part of their mission to “modernise clinical trials and advance the development of

safe, effective drugs”. Here, they define an adaptive design as “a clinical trial de-

sign that allows for prospectively planned modifications to one or more aspects of

the design based on accumulating data from subjects in the trial”. In contrast with

the traditional approach adopted in clinical trials, the ability to use information dy-

namically as it accrues to improve efficiency makes adaptive designs a particularly

attractive alternative (Pallmann et al., 2018).

The current gold standard design used in clinical trials is the randomised controlled
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trial (RCT), in which patients are randomised to either the control or experimental

treatment(s) in a pre-fixed, and typically equal, proportion. Although this design

detects a clinically meaningful treatment difference with a high probability, i.e. it

maximises the statistical power of the design under the condition of equal variances

(Atkinson and Biswas, 2014), which is of benefit to future patients outside of the trial,

it lacks the flexibility to incorporate other desirable criteria, such as the participant’s

well-being. As such, a large number of patients within the trial are randomised to

the inferior treatment, which raises ethical issues. This is particularly concerning

in a clinical trial for a rare disease in which a substantial proportion of all patients

with the disease may be included in the trial, and hence the priority should now

be on treating those patients within the trial as effectively as possible (Palmer and

Rosenberger, 1999). This highlights the inherent conflict present in a clinical trial

between individual ethics (doing what is best for the patients within the trial) and

collective ethics (doing what is best for the future target population as a whole), see

e.g. Lellouch and Schwartz (1971). RCTs focus on gathering information, and thus

place emphasis on the latter (Pullman and Wang, 2001).

The justification for a RCT is that there exists a state of equipoise throughout

the trial. Freedman (1987) defines this as a state of genuine uncertainty about which

treatment is superior. However, it may be argued that even if there exists a state of

equipoise at the beginning of a trial, some idea of which treatment is superior is likely

to be obtained as the trial progresses and the data accumulates (the fundamental

concept of an adaptive design).

This motivates the use of a particular type of adaptive design, namely, response-

adaptive designs which take advantage of the accumulating data on patient responses

to skew the allocation probabilities towards the better performing treatments, thus

reducing patient exposure to seemingly inferior treatments (Rosenberger and Lachin,

1993). The aim is to maximise the expected number of successful responses within
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the trial, whilst still maintaining sufficient power. Consequently, this type of design is

well-suited for rare disease trials and small population trials more generally, including

paediatric trials and trials involving subgroups of common diseases, following the re-

cent surge in personalised medicine (e.g. Lee and Wason, 2019), which “leads toward

a fractioning of the target population for each drug” (Zhang et al., 2019). Another

pertinent application area that has been highlighted in the literature is in trials for

highly contagious diseases, where it is hoped that the disease might be eradicated by

the treatment being tested (Berger, 2015). Acute care research, including diseases

with high mortality and no existing treatments (Meurer et al., 2012), is a further ex-

ample where response-adaptive designs may be particularly beneficial (McEvoy et al.,

2016). In contrast to RCTs, response-adaptive designs tend to favour individual ethics

(Pullman and Wang, 2001).

This raises the question of how to design a clinical trial which provides a com-

promise between the collective and individual ethics. This is a perfect example of an

exploration versus exploitation trade-off, which is prevalent in many decision-making

problems, since the fundamental tension is between exploiting treatments that have

performed well (individual ethics) and exploring new treatments in case they are

even better (collective ethics). The formalisation of this problem subsequently be-

came known as the multi-armed bandit problem (MABP) which seeks to balance this

underlying exploration versus exploitation trade-off in order to provide an optimal

allocation rule (Berry and Fristedt, 1985). Dynamic programming (Bellman, 1956)

is one possible method that can be implemented to obtain the optimal solution of

the MABP. However, this approach suffers from the “curse of dimensionality” which

limits its practical applicability, particularly when the number of treatment arms is

large. Remarkably, Gittins and Jones (1974) showed that an optimal solution exists

by decomposing the MABP into smaller sub-problems, thus removing the prohibitive

computational complexity. Moreover, it takes the form of an index policy based on
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what has become widely known as the Gittins index. Both of these solution concepts

will be described in further detail in Section 2.2.3, and will form the foundations of

the methods proposed in Chapters 3–6.

Indeed, across the bandit literature, the use of bandit solutions to optimally de-

sign a clinical trial has been the primary motivation for their study. Gittins (1979)

even states that their “chief practical significance is in the context of clinical trials”.

However, rather ironically, they have never actually been implemented in clinical

practice for reasons which will be discussed in Chapter 2. Nevertheless, in recent

years, there has been some evidence of progress, and response-adaptive randomised

designs based on the MABP, although not optimal, have been implemented in clin-

ical trials (e.g. Barker et al., 2009). Despite these recent advances, bandit theory

and clinical trial practice continue to remain relatively separate entities. Therefore,

the overarching aim of this thesis is to overcome some of the existing practical bar-

riers and thus bridge the gap between bandit theory and clinical trial practice. As

a result, this will contribute to the streamlining of clinical trials in order to improve

medical product development, as identified by the Critical Path Opportunities Report

(U.S. Food and Drug Administration, 2006).

1.1 Outline of Thesis

Chapter 2 aims to introduce the general background information and key concepts

which underpin the main ideas proposed in the subsequent chapters of this thesis.

The relevant literature with regards to both clinical trials and bandit theory will be

outlined in Sections 2.1 and 2.2, respectively, so that the reader is necessarily equipped

for the material that follows.

Chapter 3 utilises the dynamic programming solution of the MABP to propose

a response-adaptive treatment allocation rule in the context of a two-arm sequential
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clinical trial with binary endpoints (i.e. successes or failures) which are assumed to be

available immediately. Chapters 4 and 5 extend this modelling framework to encom-

pass the practical issue of delayed patient responses which significantly increases the

complexity of the problem. In Chapter 6, attention moves to the alternative solution

concept of the MABP, namely, the use of Gittins indices to allocate patients. The

focus is now on continuous endpoints, assumed to be normally distributed with un-

known mean and variance, predominantly in the multi-armed setting where patients

are allocated in blocks rather than sequentially. Additionally, the issue of artifi-

cially dichotomising a continuous endpoint and dealing with missing data is touched

upon. Simulations in the context of real and hypothetical trials are used throughout

to motivate and illustrate the proposed methodology. Chapters 3 and 6 form two

self-contained papers which have been reproduced verbatim from the corresponding

published versions and as such, there is necessarily some overlapping material.

Chapter 7 concludes this thesis by summarising the main contributions and sug-

gesting avenues for further research.



Chapter 2

Background and Literature Review

2.1 Randomisation in Clinical Trials

The concept of randomisation1 was popularised by Fisher (1926) in an agricultural

study (see e.g. Hall, 2007) and was first considered for use in clinical research by

Amberson et al. (1931) who randomised patients to treatments using the outcome of a

coin toss. However, the first iconic RCT is widely recognised as the streptomycin trial

designed by Sir Austin Bradford Hill and conducted by the Medical Research Council

(1948) in which random numbers were used to allocate patients.

Since then, randomisation of patients to treatments has been considered paramount

in comparative clinical trials in order to: (i) generate comparable groups that are sim-

ilar in terms of extraneous factors, except for the intervention of the treatment; (ii)

minimise several types of bias, e.g. treatment allocation bias2, which will ultimately

add validity to the subsequent statistical tests; and (iii) provide a probabilistic basis

for frequentist inference (Rosenberger et al., 2019).

The randomisation methods commonly used in clinical trials can be broadly cat-

1Randomisation in clinical trials may refer to either the random selection of patients from the
population into the trial or the random allocation of patients to treatments within the trial. We use
it exclusively to mean the latter throughout.

2Note that some authors, e.g. Chow and Chang (2012) and Rosenberger and Lachin (2016), use
the term selection bias analogously.

7
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egorised into two groups, namely, conventional (or fixed) randomisation (in which

the treatment allocation probabilities remain constant throughout the trial, as in

the RCT) and adaptive randomisation (in which the treatment allocation probabil-

ities vary during the trial) (Chow and Chang, 2012). Examples of adaptive ran-

domisation schemes include: treatment-adaptive (or restricted) randomisation which

seeks to balance the sample sizes between treatment groups; covariate-adaptive ran-

domisation which aims to balance covariates of interest between treatment groups

by adapting the allocation probabilities according to patient prognostic imbalance;

response-adaptive randomisation in which the randomisation probabilities change as

patient responses are observed in order to favour the better performing treatments;

and covariate-adjusted response-adaptive (CARA) randomisation which is similar to

response-adaptive randomisation, but now the patient’s covariate profile is also taken

into consideration. In the latter case, since the randomisation probabilities depend on

responses of patients with similar characteristics, such as certain types of biomarkers,

this is an important step towards personalised medicine (see Hu, 2012).

The primary focus of this thesis will be on response-adaptive randomisation meth-

ods. For an overview of the other adaptive randomisation methods, the reader is

referred to Chow and Chang (2012, Chapter 3) or Sverdlov (2015, Chapter 1). CARA

designs are also discussed in Hu and Rosenberger (2006, Chapter 9), Antognini and

Giovagnoli (2015, Chapter 6) and Rosenberger and Lachin (2016, Chapter 10).

2.1.1 Response-Adaptive Randomisation (RAR)

The exact definition of response-adaptive randomisation3 (RAR) varies in the litera-

ture. Some authors, e.g. Rosenberger and Lachin (2016), use it explicitly to refer to

response-adaptive designs that are fully randomised (i.e. non-deterministic) so that

the allocation probabilities are strictly between 0 and 1. Others, e.g. Coad (2008),

3This is sometimes referred to as outcome-, or data-, dependent randomisation within the litera-
ture.
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use it more generally to refer to any design (whether randomised or not) which uses

patient responses to adapt the allocation probabilities towards the most promising

treatment(s). Throughout this thesis, we adopt the former interpretation of RAR.

The ultimate aim of RAR is to allocate more patients to the treatment(s) per-

forming better, thus reducing patient exposure to inefficacious treatment(s), without

sacrificing randomisation. This is more ethically acceptable compared to conventional

randomisation, particularly if a treatment failure represents an extreme, or fatal, out-

come (Pullman and Wang, 2001). Although RAR does not fully eliminate the ethical

problem of randomising patients to inferior treatment(s), it certainly mitigates it by

reducing the probability of allocation to the inferior treatment(s) (Rosenberger and

Lachin, 2016). This can be considered a “necessary evil” which ensures a valid com-

parison between the treatment groups can take place in order to maintain a sufficient

level of power at the end of the trial, and hence provides a compromise between the

collective and individual patient benefit. Consequently, RAR is subject to attack from

both sides of the collective versus individual ethics debate (Tamura et al., 1994) so

remains a very controversial subject within statistical and clinical trial communities

(see Korn and Freidlin (2011); Berry (2011); Lee et al. (2012); Thall et al. (2015);

Hey and Kimmelman (2015) and corresponding commentaries; London (2018)).

Finally, the adaptive designs guideline by the U.S. Food and Drug Administration

(2018) provides an additional pragmatic rationale advocating the use of RAR, namely,

that patients may be more willing to enrol in the trial because RAR improves their

chance of being allocated to the better treatment, therefore increasing speed and ease

of recruitment. This has been demonstrated in various studies; see Tehranisa and

Meurer (2014) and McEvoy et al. (2016), for example, who illustrate that effectively

communicating the randomisation scheme to patients improves their understanding

and leads to an even higher participation rate. Ultimately, implementing RAR could

help alleviate recruitment problems which poses one of the most challenging aspects



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

in the conduct of RCTs (see Sully et al., 2013, for example).

However, RAR may lead to accrual bias in which participants wait until later on

in the trial to enrol since that way, they will have a higher probability of receiving

the superior treatment (Rosenberger, 1996). Further, if there is heterogeneity in

patient enrolment over time, such as the most severely ill patients enrolling as soon

as possible4, then a bias will be introduced which will affect the validity of the results

(see Chappell and Karrison, 2006). One solution is to use CARA randomisation if the

underlying covariates causing the heterogeneity are known in advance (Rosenberger

et al., 2012, Section 4.3). Examples of recent developments in this area include Villar

and Rosenberger (2018) and Villar et al. (2018). Alternatively, one may consider using

block RAR to reduce the bias caused by population drift (see Magirr, 2011; Korn and

Freidlin, 2011, for example).

An important consideration when choosing between conventional randomisation

and RAR is the context of a clinical trial and, more specifically, the patient horizon

(i.e. the total number of patients with the disease of interest both inside and outside

the trial). That is, does the trial include essentially every patient who will have the

condition of interest during a particular time period? Or is there a large number of

patients outside the trial who could gain from the results of the trial? Berry and

Eick (1995) compare the performance of conventional equal randomisation, in which

half of the patients are randomly allocated to each of the two treatment groups, to

four response-adaptive designs. Their main conclusion is that a design employing

equal randomisation is very nearly optimal when the condition is relatively common.

However, if the condition being treated is rare, then response-adaptive designs can

perform substantially better and might be a more suitable alternative. This is because,

in the latter case, a substantial proportion of all patients exhibiting the condition are

included in the trial. Therefore, learning about treatment effectiveness with a view

4This is often referred to as patient (or population) drift.



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

to treating patients in the “larger” outside population is much less important. Now,

the primary concern is to treat the patients within the trial as effectively as possible.

A more recent study by Du et al. (2015) obtains similar conclusions when com-

paring equal randomisation with RAR under fixed patient horizons but varying trial

sizes. In particular, they show that equal randomisation is preferred when the number

of patients outside the trial is much larger than the number inside the trial, and RAR

is favoured for large treatment differences or when the number of patients outside the

trial is relatively small.

2.1.2 Examples of RAR Procedures

RAR procedures proposed in the literature generally belong to either one of two main

families, namely, those that are: (i) design-driven, i.e. based on an intuitive rule which

can be completely non-parametric, or (ii) target-driven, i.e. based on an optimal (or

desired) allocation target which depends upon estimated parameters of the assumed

response distribution (Rosenberger and Lachin, 2016, Section 10.3). An example of

each is provided below.

(i) Randomised Play-the-Winner Rule (RPWR)

The most famous (non-randomised) response-adaptive design is the play-the-winner

rule (PWR) which was first introduced in a clinical trial context by Zelen (1969).

For a clinical trial comparing two treatments (A and B) with binary responses (suc-

cess or failure) in which patients enter the trial sequentially, the PWR proceeds as

follows: a success on a particular treatment causes the next patient to receive the

same treatment, whereas a failure on a treatment causes the next patient to receive

the alternative treatment. Suppose the first patient is randomly allocated to either

treatment A or B with probability 0.5, then an example of a response sequence from

a trial employing the PWR is displayed in Table 2.1.1.
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Treatment A Success Success Failure Success Failure ...
Treatment B Failure Success ...

Table 2.1.1: Play-the-winner allocation rule.

A fully randomised version, the randomised play-the-winner rule (RPWR), was

proposed by Wei and Durham (1978) which has the advantage that it is no longer

deterministic (so is less vulnerable to allocation bias, for example). The RPWR has

been the most studied urn model in the RAR literature (Rosenberger and Lachin,

2016) and is easily implemented in two-arm trials with binary responses as follows:

1. Initially, an urn contains u balls of type A and u balls of type B. Therefore,

clinical equipoise is assumed at the onset of the trial.

2. When a patient enters the trial, a ball is drawn randomly from the urn with

replacement. If it is a type i ∈ {A,B} ball, the patient receives treatment i.

3. When a patient’s response is available, the urn is updated as below:

(a) A success on treatment A, or a failure on treatment B, generates an addi-

tional β type A balls and α type B balls in the urn.

(b) Similarly, a success on treatment B, or a failure on treatment A, generates

an additional β type B balls and α type A balls in the urn, where 0 ≤ α ≤ β

are integers.

This rule is denoted by RPWR(u, α, β). Therefore, the urn accumulates more

balls representing the more successful treatment, thus increasing the probability that

a patient will be allocated to the current best treatment. Unlike the PWR, the

allocation probability is now a function of all past allocations and responses (rather

than depending only on that of the previous patient). In particular, it is proportional

to the number of balls of each treatment in the urn.
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Moreover, since sampling is with replacement, delayed responses can be accommo-

dated by simply updating the urn composition when the response becomes available.

Hardwick et al. (2006) refer to this as the delayed RPWR (DRPWR). Two different

DRPWR models are discussed in the literature; these are summarised in Atkinson

and Biswas (2014, Chapter 3). First, Wei (1988) extended the RPWR to incorporate

delayed responses by including another set of indicator variables (in addition to the

treatment allocation and response indicator variables of the RPWR) which determine

whether or not a previous patient’s response has been observed before allocation of

the next patient. Tamura et al. (1994) employ this DRPWR model using response

indicators for a surrogate endpoint instead which is observed sooner than the long-

term endpoint. Bandyopadhyay and Biswas (1996) introduce a second model which

has a slight modification that ensures the denominator of the conditional allocation

probability is free of any random variables. Biswas (1999) compares these two models

showing that they are asymptotically equivalent and there is no significant difference

between their performances. Hence, we will consider the first version of the DRPWR

as a comparator in Chapter 4.

Simulation studies, such as those by Rosenberger et al. (2001b) and Stallard and

Rosenberger (2002), have illustrated that the RPWR may exhibit high variability in

the allocation proportions and a significant reduction in power for certain parame-

ter values.In particular, in a two-arm trial with binary endpoints, if the sum of the

success probabilities is greater than 3/2, then the asymptotic variance of the alloca-

tion proportion depends on the initial urn composition (Hu and Rosenberger, 2003)

and a high variability with reduced power is observed (e.g. Rosenberger et al., 2001b,

Table 1). In contrast, when the sum of the success probabilities is strictly less than

3/2, the asymptotic variance is independent of the initial urn composition and as

such, the RPWR has a smaller variability and larger power. This is illustrated in

Coad and Rosenberger (1999, Table 1) in which the power values of the RPWR are
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very similar to those attained by conventional randomisation, or Rosenberger and Hu

(2004, Table 2). An alternative type of urn model which has the same limiting allo-

cation proportion as the RPWR but exhibits far less variability is the drop-the-loser

rule proposed by Ivanova (2003). Note that the theoretical relationship between the

power and variability of a RAR procedure has been derived in Hu and Rosenberger

(2003), confirming that the average power is a decreasing function of the variability

(see also Hu and Rosenberger, 2006, Chapter 2).

The practical consequences of using an allocation rule that is too variable are

demonstrated by the infamous extracorporeal membrane oxygenation (ECMO) trial

(Bartlett et al., 1985) in which the high variability of the RPWR led to an extreme

imbalance in the allocation (Hu et al., 2009a). In particular, the investigators chose to

use the RPWR(1, 0, 1) design, that is, the urn contained one ball of each type initially

and an ECMO (control) ball was added each time a patient survived on ECMO

(control) or failed on the control therapy (ECMO). The first patient was randomly

allocated to ECMO and survived. The second patient was randomly allocated to the

control and died. Hence, this meant that the odds of the next patient being randomly

allocated to ECMO were 3:1. All subsequent patients thereon received ECMO by

chance and survived. The trial terminated after 12 patients; one control patient who

had died and 11 ECMO patients, all of whom survived.

Although the study of Bartlett et al. (1985) provided encouraging evidence for the

efficacy of ECMO, the results were not convincing due to the very limited comparative

data and have since generated much controversy. Unfortunately, this has contributed

considerably to the limited application of RAR methods in practice. However, the

ECMO trial is atypical of adaptive designs in general and should not constitute a

reason to neglect adaptive designs in future modern clinical trials (Rosenberger, 1999).

Ultimately, the Bartlett et al. (1985) ECMO trial highlights the need for caution when

replacing conventional randomisation with adaptive schemes.
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(ii) Doubly Adaptive Biased Coin Design (DBCD)

The RPWR above possesses a purely myopic structure which means that each patient

is allocated to the treatment that is currently performing the best. As we have seen

from the ECMO trial, this can result in unfortunate randomisation sequences when

applied in practice. The RPWR is not based on any formal optimality criterion and

cannot target any pre-specified allocation proportion (Atkinson and Biswas, 2014),

so we now turn attention to the second major family of RAR procedures; those that

can target some desired, often optimal, allocation proportion. A general approach

for deriving the optimal allocation proportion is based on the framework proposed in

Jennison and Turnbull (2000, Chapter 17); this is discussed further within the RAR

context in Hu and Rosenberger (2006, Chapter 2) and Atkinson and Biswas (2014,

Chapter 8).

One example is the doubly adaptive biased coin design (DBCD) originally pro-

posed for the two-treatment case by Eisele (1994) and further generalised to the

multi-treatment case by Hu and Zhang (2004). This design is based on Efron’s (1971)

biased coin design and is “doubly adaptive” because it depends on both the current

allocation proportion and the current estimate of the target allocation proportion

(rather than just the former, as in Efron’s biased coin design). The basic idea is to

define an allocation function, g, from [0, 1]×[0, 1] to [0, 1] (satisfying certain regularity

conditions) which, for every patient, maps the actual allocation proportion and esti-

mated target proportion, so far, to the randomisation probability for the next patient.

Since this function involves unknown parameters of the response distribution, which

are sequentially updated using the incoming data, these designs require a pre-run of

conventional randomisation in order to obtain the initial parameter estimates.

Hu and Zhang (2004) introduced the following allocation function for the two-
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treatment case, which is commonly employed in the literature

gα(x, y) =


y(y/x)α

y(y/x)α+(1−y)((1−y)/(1−x))α
if 0 < x < 1,

1− x if x = 0, 1,
(2.1.1)

where α ≥ 0 is a tuning parameter that controls the variability of the allocation

proportions (as it increases, the variability decreases), x denotes the current allocation

proportion and y the current estimated target.

Suppose that the response distribution depends on the unknown parameter vec-

tor θ, and ρ(θ) is the target proportion of patients to be allocated to treatment A.

Assuming that we have observed j patient responses, NAj of which are from treat-

ment A, then the DBCD allocates patient j + 1 to treatment A with probability

g
(
NAj/j, ρ(θ̂j)

)
, where ρ(θ̂j) is the estimated target allocation based on the first j

patient responses. When α = 0 and θ̂j is the maximum likelihood estimator of θ,

this reduces to the sequential maximum likelihood procedure (Melfi and Page, 2000),

i.e. allocating with probability equal to ρ(θ̂j).

The DBCD has the advantage that it can be used to target any desired allocation

proportion and can be applied to continuous, as well as binary, responses (Hu and

Zhang, 2004). Moreover, relative to other RAR procedures (such as the RPWR),

it exhibits a smaller variability of the allocation proportions (as shown in Hu and

Rosenberger (2003), for example). Hu et al. (2009b) proposed an alternative to the

DBCD — the efficient randomised adaptive design (ERADE) — which can also adapt

to any desired allocation proportion but is asymptotically best5 so has even lower

variability.

An example of an optimal allocation target for a binary response trial which min-

imises the expected number of treatment failures for a fixed variance of the test

5Asymptotically best procedures attain the lower bound on the asymptotic variance of the allo-
cation proportions (for a particular allocation target); see Hu et al. (2006) for details. The drop-the-
loser rule (mentioned on p.14) is an example of an asymptotically best procedure.
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statistic is provided in Rosenberger et al. (2001b). Zhang and Rosenberger (2006)

propose a corresponding version for continuous responses which minimises the total

expected response from all patients within the trial (when a smaller response is more

desirable to patients). They compare several DBCD procedures theoretically and by

simulation for trials with continuous outcomes and conclude that the DBCD targeting

the optimal allocation is the best to use in practice. Biswas et al. (2007) illustrate that

this target allocation proportion is not suitable for normally distributed outcomes in

general since it cannot be calculated for negative means. A correction is provided

by Biswas and Bhattacharya (2009) which is the version we will implement in Chap-

ter 6 (described therein). A limitation of this optimal allocation proportion is that

it is not easily extended to the multi-armed case. However, other target allocation

proportions comparing multiple treatments have become increasingly prevalent in the

literature; examples include Tymofyeyev et al. (2007), Zhu and Hu (2009) and Jeon

and Hu (2010). Methods for finding allocation targets are also discussed in the book

by Antognini and Giovagnoli (2015).

2.1.3 Bayesian Adaptive Randomisation (BAR)

So far, the RAR procedures discussed have fallen within the frequentist paradigm

which is the standard statistical approach to designing and analysing clinical trials

(Berry et al., 2011). We now turn our attention to the alternative, and increasingly

popular, Bayesian approach which is perfectly suited to online learning and thus lends

itself naturally to the adaptive design framework. Under this approach, the unknown

parameters of the response distribution are assumed to be random and follow some

prior distribution. The incoming data is used to determine the corresponding posterior

distribution, according to Bayes’ Theorem, and hence the allocation probabilities

(which are based on some function of the posterior distributions) are updated. For a

thorough overview of Bayesian adaptive methods applied to the design and analysis
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of clinical trials, the reader is referred to the book by Berry et al. (2011).

(i) Thompson Sampling (TS)

The idea of incorporating RAR within a Bayesian framework, commonly referred to

as Bayesian adaptive randomisation (BAR), originates from Thompson (1933) who

suggested randomising a patient to a treatment based on its posterior probability of

being better than the alternative treatment. A sampling method using this concept

later became known as Thompson Sampling (TS). Although seemingly attractive,

this posterior probability is very variable (particularly earlier in the trial when not

much data has been attained) and can lead to more patients being allocated to the

inferior treatment. Moreover, using the posterior probability to allocate patients can

result in extreme imbalance and hence low statistical power. Thall and Wathen (2007)

therefore introduce a tuning parameter to stabilise the allocation probabilities; this

is the version we will implement and describe in Chapter 6, where it will be used

as a comparator in both the two-arm and multi-arm settings. Other ways to avoid

extreme imbalance, e.g. by imposing bounds on the allocation probabilities so they do

not converge to 0 or 1, are discussed in Du et al. (2015). In multi-arm trials, where

there is a shared control group, the power of the trial can be preserved by protecting

allocation to the control group (see e.g. Trippa et al., 2012; Villar et al., 2015a; Viele

et al., 2020). In this case, the adaptive randomisation scheme is applied amongst

the experimental treatments but the allocation to the control is fixed and determined

independently. An example now follows.

(ii) Trippa et al. Procedure (TP)

Trippa et al. (2012) proposed a BAR design which is similar to that of TS since

sampling is again from the posterior distribution of the unknown parameters. How-

ever, instead of computing the posterior probabilities that arm k is the best (as in
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TS), it allocates patients based on the posterior probabilities that each experimental

arm is better than the control arm (k = 0), given the current observed data, i.e.

P(µk > µ0 | data) for k = 1, . . . , K. Assume that the trial is composed of j blocks

(or stages) testing K experimental treatments against a shared control, where µk

represents the unknown parameter of the response distribution (e.g. the population

mean of treatment k if responses are normally distributed, or the success probability

of treatment k if responses are binary) and nk,j patients have been allocated to treat-

ment k by block j, then the probability of allocating treatment k to patients in block

j is given by:

πTPk,j =
π̄k,j∑K
k=0 π̄k,j

, (2.1.2)

where

π̄k,j =


P(µk>µ0|data)γj∑K
k=1 P(µk>µ0|data)γj

if k = 1, . . . , K,

1
K

{
exp

(
max(nk,j)

K
k=1 − n0,j

)}ηj if k = 0,
(2.1.3)

with γj = 3
(nj
T

)1.75
, ηj =

nj
4T

and nj =
∑K

k=0 nk,j. For information on the selection

of these tuning parameters, refer to Wason and Trippa (2014) or the online Appendix

of Trippa et al. (2012). The fundamental idea is that they tune the exploration

versus exploitation trade-off inherent in the randomisation procedure. For example,

when γj = 0, then the patients in block j will be randomly allocated to each of the

experimental arms with identical probabilities, i.e. equal, fixed randomisation, which

makes sense during the initial exploratory stage of the trial (j = 1) when no responses

have yet been observed. However, during later stages of the trial, larger values of γ

are preferable in order to exploit the information contained in the observed responses

by giving rise to larger allocation probabilities to the better arms. At the extreme,

as γ → ∞, patients would be randomly allocated to either the best experimental

treatment or the control arm only. Thus, the chosen value of γ needs to lie between
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these two extremes.

The purpose of the expression for π̄0,j is to protect allocation to the control arm

(and thus preserve power) since if the difference between the number of patients on

the control, n0,j, and the number of patients on the most commonly used experimental

arm, max(nk,j)
K
k=1, is too large, then the allocation procedure will try to compensate

for this by allocating a larger number of patients to the control arm to make the size

of these two groups more comparable.

We will implement the TP with allocation probabilities as defined in (2.1.3) in

Chapter 6 to be used as a comparator in the multi-armed setting.

BAR schemes, such as TS and TP, have become increasingly popular in practice

(see Biswas et al., 2009; Lee et al., 2010) and have been implemented in several

real-life trials, particularly cancer trials, to allocate more patients to treatments that

have performed well for similar patients (Wason et al., 2015). Notable examples

include the I-SPY 2 (Barker et al., 2009), BATTLE (Kim et al., 2011) and BATTLE-

2 (Papadimitrakopoulou et al., 2016) trials. These trials utilise designs that match

patients with the most appropriate treatment for them according to their biomarker

profiles and are thus geared towards personalised medicine (Zhou et al., 2008). The

BAR design that is implemented in the BATTLE-2 trial is described in Gu et al.

(2016). For brief reviews of the I-SPY 2 and BATTLE trials, see Berry et al. (2011,

Chapter 4).

Another type of Bayesian adaptive design is a bandit allocation rule which utilises

prior information on the unknown parameters in combination with the accruing pa-

tient observations to ascertain the optimal treatment allocation at each stage of the

trial (see e.g. Hardwick and Stout, 1991; Zhang et al., 2019). Bandit rules are cen-

tral to the methods proposed in this thesis and therefore we provide the fundamental

concepts in the following section.
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2.2 Bandit Models

2.2.1 The Multi-Armed Bandit Problem (MABP)

The multi-armed bandit problem (MABP) owes its name to its resemblance to the

situation faced by a gambler with a choice between several slot machines (or “one-

armed bandits”). It is a sequential decision problem in which, at each time, a player

must decide which bandit to operate next in order to maximise their total expected

winnings (reward) over the whole time horizon. Do they operate one which has

performed well in the past so has the largest posterior mean of winning, i.e. exploit,

or one with a larger posterior variance which therefore has the potential to perform

even better, i.e. explore? Considering only the former leads to a myopic, or one-step-

look-ahead, policy which seeks solely to maximise the immediate reward and is not

necessarily globally optimal (Berry and Fristedt, 1985). All of the rules discussed in

Section 2.1.2 were of this form.

The MABP, however, provides a mathematical formulation of this inherent ex-

ploitation versus exploration trade-off 6 which aims to balance these competing goals

and maximise the total reward in order to obtain an optimal policy. This policy

accounts for the fact that gaining new information could potentially lead to greater

rewards in the future. Consider any situation which requires a decision to be made,

e.g. choosing which chocolate bar to purchase in a shop, and notice that this trade-

off is prevalent in most real-life decision-making problems (see Cohen et al., 2007),

irrespective of the context, as reflected in Whittle’s (1982) statement that the MABP

“embodies in essential form a conflict evident in all human action”. This therefore

makes the MABP an extremely useful and important problem to solve, and explains

why it has attracted so much attention from a wide range of disciplines; see Git-

tins et al. (2011, Chapter 9) and Lattimore and Szepesvári (2019, Section 1.2) for

6Depending on the context, other terminologies for this trade-off may instead be adopted, e.g.
earn versus learn.
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examples.

The application area that we will be focussing on throughout this thesis is the

design of clinical trials and, more specifically, how to allocate patients to treatments7

(or arms) in order to optimise some pre-determined performance criterion. Attention

will be centred around a patient benefit criterion, such as maximising the number of

successful responses8 from patients within the trial or, equivalently, the proportion

of patients allocated to the superior treatment (if it exists), but there are many

other objectives that one may wish to optimise over. Interestingly, the problem of

sequentially allocating patients within a clinical trial provided the initial impetus for

the study of MABPs, first posed by Thompson (1933) and subsequently developed by

Robbins (1952), in which the term “bandits” did not yet even appear.

The classic MABP formulation assumes that any arm which is not selected re-

mains passive, that is, it does not change state or produce any reward. An important

generalisation relaxes this assumption so that passive arms can also change state, and

more than one arm can be activated at any decision time, if appropriate. This gives

rise to so-called restless bandits, introduced by Whittle (1988), which substantially

extends the modelling power of MABPs so that they can be applied to a much wider

variety of practical problems. For example, the restless bandit framework can incorpo-

rate finite horizons (unlike the classic MABP which assumes an infinite horizon) and

delayed feedback, both of which are particularly relevant to the clinical trial setting

and hence will be considered in this thesis. Restless bandits are discussed in further

detail in Gittins et al. (2011, Chapter 6).

7Note that the terms “treatments”, “arms” and “bandits” may be used interchangeably.
8Within the Biostatistics literature, the term patient response is often used to imply a patient

success. However, throughout this thesis we refer to it in its most general sense to mean either a
success or a failure.
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2.2.2 Markov Decision Processes (MDPs)

MABPs are typically modelled as Markov decision processes (MDPs), which are ex-

tensions of Markov processes to include a set of decisions (or actions) and associated

rewards at each stage. Therefore, to formulate an MDP, the following quintuple must

be defined: decision epochs, states, actions, transition probabilities and rewards. A

detailed description of these are provided in Puterman (2014, Chapter 2) and sum-

marised briefly below. Decision epochs t are simply the points in time at which deci-

sions are made and will be referred to as “time t”, where t ∈ T ≡ {0, 1, . . . , T} , T ≤

∞9. The states at time t, zt, contain all of the information required to be able to

choose an action a from the set of available actions A. In the clinical trial context, the

state represents one’s state of knowledge about the effectiveness of the correspond-

ing treatment (which is updated once the patient’s response has been observed), and

an action corresponds to allocating a patient to a treatment. These actions can be

deterministic (if they are selected with certainty) or randomised (in which case each

action is selected with some probability, e.g. Cheng and Berry (2007)). In the clinical

trial context, it is desirable for actions to be randomised, that is, patients should be

randomly allocated to treatment arms, for the reasons outlined in Section 2.1. De-

terministic actions would enable the treatment allocation sequence to be predicted,

and therefore unmasked, if the state of the trial was known. In Chapter 3, we explore

this issue further, showing how randomisation can be introduced and what effect this

has on the behaviour of the proposed RAR design. As a result of the action taken at

time t, at: (i) the system transitions to a new state at time t + 1, zt+1, according to

the transition probability P(zt+1 | zt, at), and (ii) some reward Rat(zt) accrues which

provides the basis for evaluating the chosen action. The transition probabilities and

rewards at each t depend only on the current state and action chosen in that state,

thus giving rise to a Markovian (“memoryless”) system.

9Note that although decisions are not made at decision epoch T , it is included here for complete-
ness so that the final state of the system can be evaluated (Puterman, 2014, Section 2.1.1).



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 24

The time horizon, T , of an MDP can be finite or infinite. In the latter case, rewards

are usually discounted by introducing a discount factor d ∈ (0, 1) which ensures

that the total reward obtained is finite. To complete the Markov decision problem

formulation, an optimality criterion (or objective) needs to be specified which is partly

determined by the time horizon. Assuming an infinite horizon and following Bellman

(1956), the typical objective of the classic MABP is to maximise the expected total

discounted reward over the infinite horizon, which is discussed in Gittins et al. (2011,

Chapter 2) and Puterman (2014, Chapter 7). An alternative objective, however, is to

consider the (long-run) average expected reward over the infinite horizon (Puterman,

2014, Chapter 8).

In finite horizon problems, which will be the focus of this thesis, interest is in the

expected (discounted) total reward (Puterman, 2014, Chapter 4). Suppose that the

system is in state z at time t and Eπ represents the expectation under policy10 π ∈ Π

(where Π is the set of past-measurable11 policies), then the expected total discounted

reward over the remainder of the time horizon T − t is

Vπt (z) = Eπ

[
T∑
u=t

duRau(zu)
∣∣∣ zt = z

]
, (2.2.1)

where au denotes the action that is chosen at time u (u = t, . . . , T ) under policy π and

Rau(zu) is the reward received from all arms when action au is taken. In the classic

MABP formulation, when actions are deterministic and rewards are immediate, this

is simply the reward from the arm corresponding to the chosen (or active) action.

Note that in the finite horizon case, rewards are not necessarily discounted as in the

infinite horizon case. The undiscounted finite horizon objective, which is equivalent

to substituting d = 1 into (2.2.1) and sometimes referred to as uniform discounting

10A policy is any rule that determines which action to take given the information available in state
z at time t, i.e. it is a mapping from states to actions.

11The action prescribed by a past-measurable policy at time t does not depend on what happens
after t. This is also known as history-dependent (Puterman, 2014) or non-anticipating (Jacko, 2019b).
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(e.g. Wang, 1991b; Hardwick and Stout, 1991), is the most pertinent in many appli-

cations (Jacko, 2019b). This includes the clinical trial setting, in which case there

is: (i) a finite horizon since there is a pre-determined finite number of patients in the

trial, and (ii) uniform discounting since each patient response carries the same weight

(Hardwick, 1995). Therefore, throughout this thesis, attention is restricted to the

finite horizon problem with the principal objective being to maximise the expected

total reward in (2.2.1) which, as previously mentioned, in the clinical trial setting

translates to maximising the expected total patient benefit. A thorough examination

of the finite horizon bandit problem from a statistical and theoretical perspective,

within the clinical trial setting, is provided in the book by Berry and Fristedt (1985)

(which includes an extensive annotated bibliography).

Maximising the expected total reward over the specified time horizon T gives rise

to the optimal policy12; Section 2.2.3 below discusses how this can be obtained. Note

that throughout this thesis, it is assumed that T is the total number of patients

inside the trial, n. However, one may also wish to incorporate what happens after

the trial, in which case T would represent the total number of patients both inside

and outside the trial, N , so that the optimal criterion is defined for the entire patient

population instead. Such a criterion is considered in Berry and Eick (1995), Cheng

and Berry (2007) and Zhang et al. (2019), for example, where it is assumed that the

patients outside the trial will receive the treatment that performed best during the

trial. Thus, the number of successes expected after the n patients in the trial have

responded is taken to be the size of the remaining population, N − n, multiplied

by the maximum current estimate of the treatment success rates. An example of

this type of optimal response-adaptive allocation procedure, formulated as a two-arm

bandit problem, is the robust Bayes (RB) procedure which is described and compared

to other randomisation procedures in Berry and Eick (1995). A toy example of the

12The existence of an optimal policy for a finite horizon MDP is shown in Berry and Fristedt
(1985, Chapter 2).



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 26

RB procedure, illustrating how the patients in a trial should be allocated in order

to maximise the expected number of patient successes over N , is presented in Berry

and Stangl (1996, pp. 25–29) when n = 7 and N = 100. More recently, Zhang et al.

(2019) implemented the optimal design of Berry and Eick (1995) to investigate how

the size of the patient horizon affects the power and patient benefit trade-off. This

procedure hinges on the method of dynamic programming which is described in the

following section.

2.2.3 Solution Methods to the MABP

Two possible solution methods to the MABP are now discussed. The first — dynamic

programming — is an exact approach, giving rise to a Bayes-optimal solution (see

Jacko, 2019b, Section 7.2) and will be used to implement the methods proposed in

Chapters 3–5. The alternative index-based solution, however, yields a near-optimal

approximation and will be utilised in Chapter 6.

In contrast with most RAR procedures in the literature, including those introduced

in Section 2.1.2, bandit solutions have the advantage that they look-ahead, or are

forward-looking, since they balance the myopic goal with future rewards (Hu and

Rosenberger, 2003). In other words, they maximise not only the immediate reward

but the cumulative reward, which takes account of all possible future rewards.

(i) Dynamic Programming (DP) Approach

Since MABPs can be formulated as MDPs, they are, in principle, amenable to solution

by the standard dynamic programming (DP) technique which was developed by Bell-

man (1956) (and popularised in the classic book by Bellman (1957)). Informally, this

approach involves breaking the problem down into a series of smaller sub-problems,

each of which are solved (and the solution stored) to yield the complete solution to

the original problem. Decomposing the problem in this way and storing the solutions
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of the sub-problems so that they can be re-used reduces the computational burden

considerably.

More formally, DP is based upon calculation of a value function, Ft, which rep-

resents the best possible value of the objective in (2.2.1), i.e. the maximum expected

total reward, over the set of all policies π for every possible state at time t. When

starting in state z at time t and following policy π thereafter, the value function is

defined as

Ft(z) = max
π∈Π
Vπt (z) = max

π∈Π
Eπ

[
T∑
u=t

duRau(zu)
∣∣∣ zt = z

]
.

A fundamental property of the value function is that it satisfies the following

recursive relationship, which is commonly referred to as the Bellman equation13

Ft(z) = max
a∈A

{
Ra(z) + d

∑
z′

P(z′ | z, a)Ft+1(z′)

}
for 0 ≤ t ≤ T − 1, (2.2.2)

where P(z′ | z, a) is the transition probability of moving from state z at time t to

some new state z′ at time t+1 under action a, and A is the action space containing all

available actions. Intuitively, the Bellman equation expresses a relationship between

the value of a state and the value of its successor states, which is the essence of DP.

It is helpful to notice that equation (2.2.2) comprises of two parts: (i) the immediate

reward Ra(z) received by choosing action a when in state z, plus (ii) the expected

(discounted) future reward earned from the successor states as a result of taking this

action. The second term contains the product of the probability of being in state z′

at time t+ 1 if action a is taken, and the expected total reward obtained if policy π is

followed from time t+ 1 to T when the “new” starting state is z′. The idea is that, in

every state, the action which maximises the expected combination of immediate and

13This was originally termed the functional equation by Bellman (1957). Alternative names also
include the fundamental equation of dynamic programming (Berry and Fristedt, 1985); the dynamic
programming equation (Gittins et al., 2011); the optimality equation (Puterman, 2014), etc.
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future rewards is chosen. In finite horizon problems, no action is taken at time t = T

and so the final decision occurs at time T −1. Therefore, the terminal reward at time

t = T is a function of the state only, that is, FT (z) = R(z). This is sometimes referred

to as the salvage (or scrap) value in the operational research literature (Puterman,

2014). Although the terminal reward is usually 0, there are instances when this is

not the case, e.g. if an artificial terminal reward (i.e. penalty) is introduced to avoid

certain states (as in Chapter 3) or the reward is not obtained immediately (as in

Chapters 4 and 5).

The ultimate optimisation problem is to find the maximum expected total reward

over the entire time horizon when t = 0 for a given initial state z0 = z, that is, F0(z).

By calculating this value, the policy that gives rise to it, namely, the complete optimal

policy π∗, is also found and can be expressed as π∗(z0) ≡ arg max
π∈Π

Vπ0 (z). Note that

the initial state z0 is usually a very natural choice and has just one possibility, as in

the clinical trial setting when there are no observations before the start of the trial at

time t = 0. However, in some applications, the initial state may be less obvious and

could take, for example, a set over some distribution.

When the horizon is finite, this can be solved exactly using backward induction, in

which the value function is evaluated recursively by first determining the maximum

expected reward (together with the corresponding actions) at the final time period14

of the decision process for all possible states. Proceeding towards the penultimate

period, the maximum expected reward for every possible state is again calculated,

but this time incorporating the information just obtained for the subsequent period

as well. Continuing backwards in time until the start of the problem at time t = 0

allows the optimal reward F0(z0), along with the corresponding optimal policy (or

policies), to be determined for every state at every point in time.

More formally, the backwards induction algorithm can be summarised as follows:

14A period (or stage) represents the time between two consecutive decision epochs.
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1. Let t = T and FT (z) = R(z) for all z = zT ,

2. For t = T − 1, T − 2 . . . , 0 and for each z = zt, calculate:

(a)

Ft(z) = max
a∈A

{
Ra(z) + d

∑
z′

P(z′ | z, a)Ft+1(z′)

}
,

(b)

π∗(z) ≡ arg max
a∈A

{
Ra(z) + d

∑
z′

P(z′ | z, a)Ft+1(z′)

}
,

3. If t = 0, stop. Otherwise, repeat Step 2.

At the end of the algorithm, F0(z) will contain the maximum expected discounted

sum of rewards received by following policy π∗(z) from state z = z0.

Thus, when implementing this algorithm computationally, two multi-dimensional

arrays, indexed by state, need to be created: (a) the value F containing the maximum

expected total reward for the corresponding combination of states, and (b) the optimal

policy π∗ containing the actions which give rise to these values.

An illustrative example of the backward induction algorithm applied to the finite

horizon two-armed bandit problem of optimally allocating patients in a clinical trial,

i.e. when T = n, is provided in Appendix 3.6.1 of Chapter 3. See also the example

provided in Berry and Stangl (1996, pp. 25–29) which includes accompanying figures

to demonstrate how backwards induction is used to optimally allocate patients over

the entire patient horizon, i.e. when T = N .

The DP approach requires a considerable amount of computational power and

memory to calculate and store the solution, even for relatively small problems. For

example, consider the problem of allocating patients in a clinical trial of size T = n

with two treatments (A and B) available and binary responses (success or failure).

At each time t, there will be four possibilities (success on A, failure on A, success

on B or failure on B) and hence, 4n possible paths which need to be enumerated



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 30

in order to determine the optimal policy15. As the number of arms increase, the

size of the problem grows exponentially; a phenomenon referred to as the curse of

dimensionality (Bellman, 1961). See Villar et al. (2015a, Figure 1) which illustrates

how the computational requirements of DP rapidly increase with T , even for a small

number of arms. Furthermore, Zhang et al. (2019, Section 3.3) find that “with three

arms and sample sizes of 100, it becomes infeasible”. For this reason, DP is often

thought to be of limited applicability in practice. However, with the advancement in

modern day computers, DP methods can be used to solve MDPs with millions of states

(Sutton and Barto, 2017) and the survey by Jacko (2019b) shows that DP solutions

are tractable for much larger horizons than are commonly believed. For example,

the author develops a package which computes the DP design in a few minutes for

T ≈ 1000, a few hours for T ≈ 2000 or a few days for T ≈ 4000 (refer to Jacko (2019a)

for details of implementation).

When the dimension of the state space is too large to deem exact DP methods

suitable, the value function can be approximated using a heuristic algorithm instead.

A plethora of such algorithms (e.g. TS discussed in Section 2.1.3) prevail the bandit

and operational research literature, and many fall under the umbrella term of approx-

imate dynamic programming (ADP), but we do not go into details here since they are

beyond the scope of this thesis. The interested reader is referred to Powell (2011) for

an accessible introduction to ADP.

Some of the most popular bandit algorithms have been evaluated within a clinical

trial context by Kuleshov and Precup (2000) to determine whether they constitute

effective adaptive trial strategies. Simulation studies showed that they all performed

similarly. In particular, they successfully treated at least 50% more patients, resulted

in fewer adverse effects and greater patient retention compared to fixed randomisation,

but had more difficulty identifying the superior treatment. Even though the bandit

15In the clinical trial context, the policy is synonymous to the allocation rule, or design, that
specifies which treatment arm each patient receives.
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algorithms received delayed feedback (since the response was observed 13 days after

administration of the treatment), this had minimal impact on their effectiveness.

In addition, it is worth noting that patient dropout was interpreted as a treatment

failure which is a common assumption in trials with a binary response, and we discuss

a possible way to deal with this for continuous responses in Chapter 6. See Kaibel and

Biemann (2019) for another simulation study comparing a range of bandit algorithms

with fixed randomisation, but this time for normally distributed outcomes.

A further impediment to the use of the DP design in clinical trial practice is that “it

is difficult to describe and cumbersome to communicate” (Berry, 1978). Therefore, an

alternative solution which both reduces the computational difficulties and is simpler

to communicate is now discussed below.

(ii) Index-Based Approach

A key breakthrough for the infinite horizon MABP was provided by Gittins and

Jones (1974), who showed that instead of solving the K-dimensional MDP (where

K is the number of arms), an optimal solution can be found by decomposing this

into K one-dimensional optimisation problems (where the computational cost now

increases linearly with K rather than exponentially). Remarkably, it was shown that

the optimal policy obtained by backward induction is equivalent to an index policy.

That is, an index can be computed separately for each arm as a function only of

its current state, such that the optimal policy is always to continue the arm with

the largest current index. This was originally called the dynamic allocation index by

Gittins (1979) and subsequently named the Gittins index by Whittle (1980), which

is how we will refer to it hereafter (and how it widely appears in the literature). The
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Gittins index for arm k (k = 1, . . . , K) is defined by

G(zk) = sup
τ>0

E
[∑τ−1

t=0 d
tRk(z

k
t )
∣∣∣ zk0 = zk

]
E
[∑τ−1

t=0 d
t

∣∣∣ zk0 = zk
] , (2.2.3)

where τ is a stopping time and Rk(z
k
t ) is the immediate reward obtained from allocat-

ing arm k when in state z at time t. Here, the rewards are geometrically discounted16

(which is the second most frequently considered discount sequence in the literature

(Berry and Fristedt, 1985)). Note that the numerator in equation (2.2.3) represents

the expected total discounted reward up to τ , whilst the denominator represents the

expected total discounted time up to τ . Thus, the Gittins index is interpreted as the

maximum expected reward per unit of discounted time when starting from the initial

state.

For a given discount factor d, the method of calculating these indices is described in

Gittins (1979) and Gittins et al. (2011, Chapter 7). In addition to Bernoulli endpoints,

Gittins indices have been derived for a variety of others, including: normal (with known

(Jones, 1970) and unknown variance (Jones, 1975)), multinomial (Glazebrook, 1978)

and exponential (Amaral, 1985). Tables containing the calculated Gittins index values

are provided in Gittins et al. (2011). Since the Gittins index is independent of K,

the relevant table can be used for all possible trials, which reduces the computational

requirements even further (Villar et al., 2015a).

When using Gittins indices to solve the K-armed MABP in a clinical trial context,

the Gittins index theorem no longer applies because the horizon is finite and hence,

the solution obtained will not be optimal. However, although not optimal, it can still

be used to approximate the optimal policy when applied with a truncated horizon

T < ∞ instead, and, as Bather (1981) stated, “the principle can still be effective”.

We now provide some examples, both past and present, of treatment allocation rules

16Berry and Fristedt (1985, Theorem 6.2.1) show that for the classical MABP, Gittins indices are
optimal only if the discount sequence is geometric.
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that are based on Gittins indices, and outline what remains to be done in the future

to increase their desirability of being applied in practice.

Robinson (1983) was the first to consider the relative merits of Gittins indices for

a finite horizon. In particular, sequential allocation rules based on Gittins indices for

a Bernoulli two-armed bandit problem using discount factors 0.99, 0.995 and 0.9999

were compared against three different adaptive rules (as well as equal allocation). The

appropriate choice of d remained unclear to the author, although he did comment that

“for medical applications, it should be near one”. Berry and Fristedt (1985, pp. 249-

250) queried the choice of discount factor and suggested that a more reasonable choice

may be 1 − 1/T , which was also suggested by Wang (1991b). As with most of the

early literature on response-adaptive allocation rules for Bernoulli responses, these

comparisons were based on two criteria: expected successes lost17 (a measure of the

patient benefit; the smaller, the better) and the error probability (the probability

that the inferior treatment has the higher proportion of successes). Simulation results

showed that the Gittins index rules had slightly larger error probabilities, but con-

siderably smaller expected successes lost, than equal allocation, even when there was

a substantial delay in observing the response. Moreover, the author commented that

this rule is easy to use given the availability of tables for the indices, and performs

well for a wide range of model parameters.

Hardwick and Stout (1991) and Hardwick (1995) also consider an allocation rule

based on approximations to the Gittins indices using its lower bounds18 (which are

easier to compute) and compare it to the optimal rule based upon the DP solution

to the finite horizon two-armed bandit problem. They show that their proposed rule

satisfies both power and patient benefit criteria adequately, thus providing a good

compromise. Therefore, as Hardwick (1995) points out, the Gittins lower bound (or

17Note that minimising the expected successes lost is equivalent to maximising the expected num-
ber of successes (which is the criterion we will consider).

18The general expression for the lower bound given an arbitrary prior distribution is provided in
Berry and Fristedt (1985, Example 5.4.6).
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modified bandit) allocation rule “has a special appeal for clinical trial applications

since it can be viewed as offering an ethically equitable mechanism for balancing

outcomes of present and future patients”.

Wang (1991b) advocates the use of Gittins indices as “a promising choice to use

in clinical trials” and consequently proposes an adaptive allocation rule using Gittins

indices with discussion on the appropriate choice of discount factor. In particular,

he suggests that although a reasonable choice of d is 1 − 1/T , it is not the best way

to use Gittins indices to approximate the optimal solution and ideally, the discount

factor should get smaller as fewer patients remain in the trial. Therefore, he rec-

ommends choosing the discount factor dynamically, based on the number of patients

remaining in the trial, which he refers to as the dynamic Gittins index (DGI) alloca-

tion. Simulation results comparing the DGI with the optimal solution obtained using

DP for small trial sizes (up to T = 20) reveal that the difference between DGI and

the optimal policy is negligible in terms of the expected total number of successes

received. Moreover, he concludes that if the disease is rare, in which case the focus is

on treating patients in the trial as effectively as possible, then Gittins indices should

be used. Alternatively, if the disease is common, he suggests using the least failures

rule, i.e. the limit case of the Gittins index rule as d→ 1 (Kelly, 1981).

In another paper by Wang (1991a), it is shown that introducing a constraint pa-

rameter into the Gittins index rules significantly reduces the error probability incurred

when using Gittins indices to allocate patients. Wang (1991a) also generalises these

rules to the case when the response distribution is unknown. This constrained Gittins

index rule is further explored by Coad (1991b, 1995) in the normal response setting

and implemented in Chapter 6 of this thesis as a comparator method (where a de-

scription of the method is provided). Coad (1992) also studied the effect of linear

time trends on sequential allocation rules based on Gittins indices and considered

analysing the data in blocks (as we do in Chapter 6) as a means of ameliorating the
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effect of time trends.

An important extension of the Gittins index was introduced by Whittle (1988) who

proposed a heuristic rule, known as the Whittle index, as a solution to the multi-armed

restless bandit problem (see Section 2.2.1). This reduces to the Gittins index in the

classic case when passive bandits remain frozen. Although the Whittle index policy

is not optimal in general, Weber and Weiss (1990) proved that it is asymptotically

optimal under certain conditions. Refer to Gittins et al. (2011, Chapter 6) for further

details. In Chapter 3, the Whittle index policy is considered as a comparator instead

of the Gittins index because the corresponding MABP is restless due to the following

reasons: (i) the horizon is finite and so the number of patients in the trial remaining

to be treated is included as a state variable (which changes for all arms at each t,

regardless of the action taken), and (ii) actions are randomised meaning that more

than one arm can change state during a time period, thus removing the one-to-one

correspondence between the action and arm chosen that exists in the deterministic

case. Moreover, the Gittins index theorem only applies when actions are deterministic.

The relative advantages and disadvantages of using Gittins and Whittle index

policies for the classic and restless Bernoulli MABP, respectively, as potential patient

allocation rules are discussed at length in the paper by Villar et al. (2015a). In the

former case, the horizon is truncated and in the latter case, the finite horizon Bernoulli

MABP is reformulated as an equivalent infinite horizon restless MABP. Simulation

results, in both the two-armed and multi-armed settings, show that the index-based

policies perform extremely well with respect to the patient benefit criteria, and start to

skew patient allocation towards the superior arm earlier than the alternative adaptive

designs considered. The increase in the expected number of patient successes relative

to the other designs considered was most pronounced in the multi-armed case. How-

ever, they suffer from a severe reduction in power which severely hinders their use in

practice. Therefore, the authors suggest a modified version of the Gittins index rule
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— the controlled Gittins approach — which protects allocation to the control group

in a similar vein to the aforementioned TP in Section 2.1.3(ii), and thus improves the

power. A similar approach is considered in Chapter 6.

The performance of the Gittins and Whittle index rules, amongst others, is fur-

ther explored in Villar (2018) through both exact and simulated calculations, with a

particular focus on their application to rare disease trials. Although the Gittins and

Whittle index policies behave similarly, the Whittle index is shown to always outper-

form the Gittins index in terms of the expected proportion of patients allocated to

the best arm. Moreover, simulation results in the two-armed case show that both the

Gittins and Whittle index rules are almost identical to the optimal rule obtained by

DP, with the sub-optimality gap increasing slightly in the multi-armed case.

All of the aforementioned index-based allocation rules are deterministic which is a

major barrier to their implementation in practice. Although semi-randomised index-

based rules have been proposed in the literature, e.g. Glazebrook (1980); Bather (1980,

1981), in which random perturbations are added to the index value, they are not fully

randomised since they are not expressed in terms of allocation probabilities. Villar

et al. (2015b), however, present a fully randomised design using Gittins indices —

the forward-looking Gittins index (FLGI) — which is applied to blocks of patients,

rather than individuals. Simulation results show that the FLGI continues to increase

the number of patient successes significantly compared to alternative adaptive ran-

domised designs (including TS and TP described in Section 2.1.3), yet fails to meet

the required power level. This design is discussed further in Chapter 6 where it forms

the foundations of the method proposed. An extension of the FLGI to incorporate

binary covariates has also been suggested by Villar and Rosenberger (2018) which is

beyond the scope of this thesis but forms an ongoing area of research.

With the exception of the constrained Gittins index, the above index-based alloca-

tion rules focus only on the Bernoulli bandit problem and examples of applying them
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to endpoints other than binary within the clinical trial setting are limited. A recent

example, however, is provided by Smith and Villar (2018) who investigate Gittins

index-based allocation rules for the case when the outcome is normally distributed

with known variance. The results support that the Gittins index-based designs achieve

the largest patient benefit relative to alternative designs used in clinical trial practice,

especially in the multi-armed case, at the expense of a power reduction.

2.3 Summary

Despite index-based allocation rules being: computationally feasible for multi-armed

trials and large T ; easy to implement; appealing to use if patient benefit within the

trial is a primary concern (as in rare diseases); conceptually simple to summarise to

clinicians and patients etc. due to the intuitive nature of always allocating the arm

with the largest index, which is paramount since “if a scheme is impracticable then,

no matter what its theoretical advantages happen to be, it will not be used” (Upton

and Lee, 1981), they are yet to be implemented in clinical trial practice.

Moreover, bandit rules in general have been proposed and studied in the literature

for many years so their theoretical properties are very well understood and, as already

mentioned, their initial motivation was in the design of clinical trials, which makes

us question why they have never been applied in practice. As a result of reviewing

the pertinent literature, several possible reasons for this have been identified, the

main findings of which are now summarised and used to provide the impetus for the

methods proposed in the subsequent chapters.

• Patient responses need to be available immediately, or at least before the next

patient is allocated. This only applies to a small proportion of clinical trials, e.g.

some rare disease or paediatric trials, or if the treatment is fast-acting. How to

obtain a solution to the exploration versus exploitation trade-off in the presence
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of delayed responses, however, is possibly the greatest challenge for both bandit

literature and clinical trial practice. Consequently, Chapters 4 and 5 attempt

to tackle this problem for the DP approach.

• The allocation of patients to treatments following a bandit rule that is optimal

with respect to patient benefit is deterministic and most of the bandit literature

deals with non-randomised procedures (Rosenberger and Hu, 2004; Rosenberger

and Lachin, 2016). Chapter 3 concentrates on introducing randomisation into

the DP solution of the two-armed Bernoulli bandit problem, whereas Chapter 6

randomises groups of patients based on probabilities determined by the Gittins

index, resulting in a fully randomised Gittins index-based allocation rule.

• Bandit allocation rules result in insufficient statistical power to detect a signifi-

cant treatment difference at the end of the trial. This is a severe limitation from

a practical perspective, even if the issue is mitigated in the rare disease setting

(since there are comparatively few patients outside the trial), which is where

these designs are deemed to be most applicable19. Note, however, that this is

not limited to bandit rules, it extends to all RAR procedures because it is not

possible to maximise both patient benefit and power simultaneously (Hu and

Rosenberger, 2003). Therefore, interest is in utilising ways which can improve

the power of bandit-based solutions. In the two-arm case of Chapter 3, as well

as randomising the allocation probabilities, a constraint is introduced into the

value function to avoid extreme imbalance which leads to low power. In the

multi-armed case of Chapter 6, we adopt the effective approach identified in the

literature of applying the index rule only to the experimental arms whilst fixing

allocation to the control arm (see e.g. Viele et al., 2020).

• Bandit allocation rules typically exhibit other undesirable frequentist proper-

19For example, in the Discussion of Bather (1981), Prof. D. Berry comments that “the primary
hope for future applications [of bandit rules] lies in small clinical trials involving rare diseases”.
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ties, such as a lack of type I error control and biased estimates of the treat-

ment effects. However, it is again important to note that this is a problem

with (response-) adaptive rules more generally due to the dependence structure

induced in the resulting observations (Rosenberger and Lachin, 2016). Inves-

tigating methods to minimise the bias of the resulting estimates is beyond the

scope of this thesis, but the reader is referred to the following literature: Coad

and Ivanova (2001); Bowden and Glimm (2008); Carreras and Brannath (2013);

Robertson (2016); Bowden and Trippa (2017); Robertson and Glimm (2019),

and references therein. See also Robertson and Wason (2019) for a recently

proposed procedure which guarantees strong control of the error rate for RAR

trials.

• Most of the relevant research has focused on the simplest context of a two-armed,

sequential trial with Bernoulli responses. This is somewhat restrictive in the

clinical setting where other endpoints are also of interest, and increasingly more

trials are including multiple arms to improve efficiency in response to the Criti-

cal Path Opportunities Report (U.S. Food and Drug Administration, 2006), see

e.g. Wason and Jaki (2016, 2018). In Chapter 6, we propose and evaluate a

Gittins index-based design for normal outcomes (with unknown variance) in

multi-armed trials. Moreover, we move from the fully sequential setting to the

group sequential setting in which patients are randomised in groups at a finite

number of interim analyses.



Chapter 3

A Bayesian Adaptive Design for

Clinical Trials in Rare Diseases

3.1 Introduction

Before any new medical treatment is made available to the public, clinical trials must

be undertaken to ensure that the treatment is safe and efficacious. Development of

treatments for rare diseases is particularly challenging due to the limited number of

patients available for experimentation.

The current gold standard design is the randomised controlled trial, in which

patients are randomised to either the experimental or control treatment in a pre-

fixed proportion. Its main goal is to learn about treatment effectiveness with a view

to prioritising future patients outside of the trial. Although this design can detect a

significant treatment difference with a high probability, i.e. it maximises the statistical

power, which is of benefit to future patients, it lacks the flexibility to incorporate other

desirable criteria, such as the trial participant’s well-being. As such, a large number of

patients within the trial receive the inferior treatment. This is particularly concerning

for rare disease trials in which a substantial proportion of all patients with the disease

40
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may be included in the trial. Moreover, there will be fewer patients available outside

of the trial to benefit from the learning. Therefore, in this case, the priority should

be on treating those patients within the trial as effectively as possible.

This motivates the use of response-adaptive designs for clinical trials involving

rare diseases in which the accruing data on patient responses are used to skew the

allocation towards the superior treatments, thus reducing patient exposure to inferior

treatments. Although it does not fully eliminate the ethical problem of randomising

patients to the inferior treatment, it certainly mitigates it by reducing the probability

of allocation to the inferior treatment, if it exists.

Berry and Eick (1995) compare the performance of the traditional design, in which

half of the participants receive treatment A and the other half receive treatment B,

to four response-adaptive designs. They conclude that if the condition being treated

is rare, then response-adaptive methods can perform substantially better and might

be a more suitable alternative.

Despite the long history in clinical trials methodology, very few response-adaptive

designs have actually occurred in practice and applications thus far have been dis-

appointing (Rosenberger, 1999). This is largely attributable to the extracorporeal

membrane oxygenation (ECMO) trial by Bartlett et al. (1985) which employed the

randomised play-the-winner rule, a response-adaptive design described briefly in Sec-

tion 3.21.

The problem of designing a clinical trial which aims to identify the superior treat-

ment (exploration or learning) whilst treating the trial participants as effectively as

possible (exploitation or earning) is a natural application area for bandit models,

a type of response-adaptive design. Bandit models seek to balance the exploration

versus exploitation trade-off in order to obtain an optimal allocation policy which

maximises the expected number of patient successes over a finite number of patients.

1See also Section 2.1.2.
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As such, they present an appealing alternative to the traditional approach used in

clinical trials. Across the bandit literature, the use of bandit models to optimally

design a clinical trial is often referred to as the primary motivation for their study

(Gittins, 1979). However, to the best of our knowledge, they have never been im-

plemented in real clinical practice for reasons including lack of randomisation and

biased treatment effect estimates. Moreover, in contrast to the traditional approach

taken in clinical trials, bandit models exhibit very low power since it is not possible

to maximise both power and patient successes simultaneously. For a discussion of

the benefits and challenges of bandit models in clinical trial practice, see Villar et al.

(2015a).

In this chapter, we propose a novel bandit-based design which provides a very

appealing compromise between these two conflicting objectives and addresses some of

the key issues that have prevented bandit models from being implemented in clinical

trial practice. We modify the optimal design, which aims to maximise the expected

number of patient successes, in such a way that we overcome its limitations without

having a significant negative impact on the patient benefit.

The modifications involve incorporating randomisation into a currently determin-

istic design, which was considered by Cheng and Berry (2007), and adding a constraint

which forces a minimum number of patients on each treatment. These are described

in Sections 3.2.2 and 3.2.3, respectively, building on the standard dynamic program-

ming approach presented in Section 3.2.1. In Section 3.4, we compare our design

to alternative designs via extensive simulations in several scenarios in the context of

a recently published phase II clinical trial of isotonic fluid resuscitation in children

with severe malnutrition and hypovolaemia (Akech et al., 2010). We evaluate each

design’s performance according to the measures set out in Section 3.3. We summarise

the main conclusions in Section 3.5 and highlight areas for future research.
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3.2 Methods

In this section, we introduce different methods for allocating patients to treatments

in a clinical trial. For simplicity of exposition, we consider a two-armed clinical trial

with a binary endpoint and a finite number of patients within the trial, n. Patients

enter the trial sequentially over time, one-by-one, and each patient is allocated to

either treatment A or B on arrival. We assume that n is fixed but that the sample

sizes for treatment groups A and B, denoted by NA and NB respectively, are random,

where NA + NB = n. Let X and Y denote the patient’s response (either a success

or failure) from treatments A and B respectively, which we model as independent

Bernoulli random variables. That is,

X ∼ Bernoulli(1, θA) and Y ∼ Bernoulli(1, θB), for 0 ≤ θA, θB ≤ 1,

where θA and θB are the unknown success probabilities of treatments A and B re-

spectively. Further, assume that each patient’s response from the allocated treatment

becomes immediately available2.

The fixed randomised design randomises patients to either treatment A or B with

an equal, fixed probability, i.e. 50% in a two-armed trial. This will act as a reference

to which each of the response-adaptive designs described below will be compared

against.

One of the most well-known response-adaptive designs is the randomised play-

the-winner (RPW) rule, a type of urn model, proposed by Wei and Durham (1978).

This design is very intuitive and applies specifically to clinical trials comparing two

treatments with binary responses. Initially, an urn contains u balls of type A and

u balls of type B. When a patient is recruited, a ball is drawn randomly from the

urn with replacement; if it is a type A ball, the patient receives treatment A and if

2Note that we relax this assumption in Chapters 4 and 5.
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it is a type B ball, the patient receives treatment B. After each patient’s outcome is

observed, a decision about the urn composition is made depending on the observed

result. Thus, a success on treatment A, or a failure on treatment B, generates an

additional β type A balls and α type B balls in the urn. Similarly, a success on

treatment B, or a failure on treatment A, will generate an additional β type B balls

and α type A balls in the urn, where 0 ≤ α ≤ β are integers. In this way, the

urn accumulates more balls representing the superior treatment, thus increasing the

probability that a patient receives the current best treatment. Note that the RPW

rule is myopic (as are most response-adaptive designs) in the sense that it uses all of

the past observations to treat the next patient as if this were the last patient in the

trial.

3.2.1 Optimal Design using Dynamic Programming (DP)

The RPW rule described above is not constructed based on any formal optimality cri-

terion so we now turn our attention to an alternative approach which utilises dynamic

programming. With this approach, prior information on the unknown parameters is

used in conjunction with the incoming data (and the number of remaining patients in

the trial) to determine the optimal treatment allocation for every patient of the trial.

Note that we use t to denote both time and the last patient treated in this model

since they are analogous, that is, at time t we have treated t patients. The trial time

is therefore bounded by 0 ≤ t ≤ n.

Since the treatment effects take values between zero and one, it is sensible to assign

the parameters independent Beta prior distributions

θA ∼ Beta(sA,0, fA,0) and θB ∼ Beta(sB,0, fB,0) for 0 ≤ θA, θB ≤ 1,

where sA,0 (fA,0) and sB,0 (fB,0) represent the prior number of successes (failures)
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on treatments A and B, respectively. Since this is a conjugate prior with respect

to the Bernoulli likelihood function, the posterior distribution follows another Beta

distribution with parameters summarising the relevant information from the trial to

date (that is, the combination of the initial prior plus the accumulated data). At time

t ≥ 1, after observing sA,t (fA,t) successes (failures) on treatment A, and sB,t (fB,t)

successes (failures) on treatment B, the posterior distribution is expressed by

θA | sA,t, fA,t ∼ Beta(sA,0+sA,t, fA,0+fA,t) and θB | sB,t, fB,t ∼ Beta(sB,0+sB,t, fB,0+fB,t),

where sA,t + fA,t + sB,t + fB,t = t for t ≥ 1. Therefore, it will only be necessary to

update the parameters of these distributions as the trial progresses. For simplicity,

let the prior information and data combined be denoted as

s̃A,t = sA,0 + sA,t, f̃A,t = fA,0 + fA,t, s̃B,t = sB,0 + sB,t and f̃B,t = fB,0 + fB,t. (3.2.1)

Therefore,
s̃j,t

s̃j,t+f̃j,t
is the posterior probability (i.e. the current belief ) of success for

treatment j given the prior information and data up to patient t.

Let δj,t, for t = 0, . . . , n− 1, be the binary indicator variable representing whether

patient t+ 1 is allocated to treatment j ∈ {A,B}, where

δj,t =

 1, if patient t+ 1 is allocated to treatment j,

0, otherwise.
(3.2.2)

Using the jargon of dynamic programming, δj,t is the reward for every successfully

treated patient, and thus
s̃j,t

s̃j,t+f̃j,t
· δj,t is the expected (one-period) reward, where

expectation is taken in the Bayesian sense, i.e. according to the current belief.

Let Π be the family of admissible designs (i.e. allocation policies) π, which are

those such that
∑

j δj,t = 1 for all t since only one treatment is allocated per patient.

Let Ft(sA, fA, sB, fB) be the value function representing the maximum expected total
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reward, i.e. the maximum Bayes-expected number of successes, in the rest of the trial

after t patients have been treated when the combined information is (sA, fA, sB, fB),

that is,

Ft(sA, fA, sB, fB) :=

max
π∈Π

Eπ
n−1∑
u=t

∑
j∈{A,B}

s̃j,u

s̃j,u + f̃j,u
· δj,u

∣∣∣∣∣∣ s̃A,t = sA, f̃A,t = fA, s̃B,t = sB, f̃B,t = fB

 .
Note that this depends on the total number of patients n even though we do not

state it explicitly to simplify the notation.

The ultimate optimisation problem is to find an optimal design which maximises

the expected total reward, i.e. the Bayes-expected number of successes, over the set

of all policies in the whole trial for a given prior at time t = 0, namely,

F0(sA,0, fA,0, sB,0, fB,0). (3.2.3)

The problem summarised in equation (3.2.3) is known as a finite-horizon Bayesian

Bernoulli two-armed bandit problem which can be solved exactly using dynamic pro-

gramming methods, giving rise to an optimal adaptive treatment allocation sequence.

Specifically, one can implement a backward induction algorithm which starts with the

last patient, patient n, and proceeds iteratively towards the first patient. Details of

this algorithm can be found in the Appendix 3.6.13.

Suppose that t < n. If treatment A is allocated to the next patient, then the

expected total reward, i.e. the Bayes-expected number of successes, for patients t+ 1

3See also Section 2.2.3(i).
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to n under an optimal policy is

FAt (sA, fA, sB, fB) =
sA

sA + fA
· [1 + Ft+1(sA + 1, fA, sB, fB)]

+
fA

sA + fA
· Ft+1(sA, fA + 1, sB, fB).

Alternatively, if treatment B is allocated to the next patient, then the expected

total reward, i.e. the Bayes-expected number of successes, for patients t+1 to n under

an optimal policy is

FBt (sA, fA, sB, fB) =
sB

sB + fB
· [1 + Ft+1(sA, fA, sB + 1, fB)]

+
fB

sB + fB
· Ft+1(sA, fA, sB, fB + 1).

Therefore, the value function satisfies the following recurrence known as the prin-

ciple of optimality,

Ft(sA, fA, sB, fB) = max
{
FAt (sA, fA, sB, fB), FBt (sA, fA, sB, fB)

}
, for 0 ≤ t ≤ n− 1,

Fn(sA, fA, sB, fB) = 0, otherwise . (3.2.4)

Unlike most response-adaptive designs, this is not a myopic allocation rule. In-

stead, all possible sequences of treatment allocations and responses are enumerated,

and the sequence that maximises the expected number of patient successes over the

finite planning horizon is selected (Hu and Rosenberger, 2006). As such, this approach

is computationally intensive and suffers from the curse of dimensionality (Bellman,

1961). However, we provide an efficient algorithm for the optimal DP design, im-

plemented in the programming language R; the computational times are shown in

Table 3.6.1 of the Appendix 3.6.1.

The computational complexity of the dynamic programming methods to solve this

problem is the main motivation behind the implementation of simpler index-based
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solutions which circumvent the aforementioned problem of dimensionality. One such

solution, which we include as a comparator, is the Whittle index (WI) proposed by

Whittle (1988). This can be applied when the horizon is finite, which is the case with

a clinical trial since there are a finite number of patients in the trial. It is derived from

a relaxation of problem (3.2.3), allowing the multi-armed problem to be decomposed

into single-armed problems in which the states are augmented, adding the number

of patients remaining to be treated as an additional state. Although the WI is a

heuristic solution, it has been found to be near-optimal in several cases. See Villar

et al. (2015a) for a detailed review of the WI as a potential patient allocation rule in

a clinical trial.

It is shown in Villar et al. (2015a) and Villar et al. (2015b), and further illustrated

by our results, that optimal designs which achieve the highest patient benefit suffer

from very low power. Moreover, optimal designs are completely deterministic (Cheng

and Berry, 2007) which means there is a risk of introducing various sources of bias

into the trial, e.g. selection bias (Blackwell and Hodges, 1957). Both of these factors

contribute to making the optimal design unsuitable to implement in clinical trial

practice. Therefore, in the rest of this section we focus on modifications to the DP

design which address these shortcomings, i.e. its determinism and low power, while

improving over a fixed randomised design in terms of patient benefit measures, such

as overall response.

3.2.2 Optimal Design using Randomised Dynamic Program-

ming (RDP)

Randomisation is a critical component in the design of clinical trials, not least to min-

imise the bias and confounding in order to achieve the desired accuracy and reliability

(Chow and Liu, 2014). Therefore, a natural first step is to modify the optimal design

by forcing actions to be randomised; see Cheng and Berry (2007). This is achieved by
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assigning a probability to the allocation rule at each stage. In particular, we define

the following actions so that each treatment has a probability of at least 1−p of being

allocated to each patient, where 0.5 ≤ p ≤ 1 for two-armed trials and will be referred

to as the degree of randomisation. Note that p = 0.5 and p = 1 correspond to fixed,

equal randomisation and the DP design, respectively.

(i) Action 1 (a = 1): The next patient receives treatment A with probability p and

treatment B with probability 1− p.

(ii) Action 2 (a = 2): The next patient receives treatment B with probability p and

treatment A with probability 1− p.

The associated expected total reward under this new action definition changes,

along with the corresponding value function. Specifically, the expected total reward,

i.e. the Bayes-expected number of successes, for patients t+ 1 to n when a = 1 is now

given by

F1
t (sA, fA, sB, fB) = p · FAt (sA, fA, sB, fB) + (1− p) · FBt (sA, fA, sB, fB),

and analogously when a = 2,

F2
t (sA, fA, sB, fB) = (1− p) · FAt (sA, fA, sB, fB) + p · FBt (sA, fA, sB, fB).

Thus, in contrast to that shown in (3.2.4), the value function satisfies

Ft(sA, fA, sB, fB) = max
{
F1
t (sA, fA, sB, fB), F2

t (sA, fA, sB, fB)
}
, for 0 ≤ t ≤ n− 1,

Fn(sA, fA, sB, fB) = 0, otherwise.

We refer to this design as the randomised dynamic programming (RDP) design

hereafter.
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Preferably, we would like p to be as close to one as possible so that the action

that allocates to the superior treatment with probability p is as effective as possible.

However, this would entail that sometimes, by chance, the inferior treatment is sam-

pled too few times or not at all. The possibility of this undesirable event occurring

makes this design unsuitable to implement in practice as it results in low power and

estimates with large biases.

3.2.3 Optimal Design using Constrained Randomised Dy-

namic Programming (CRDP)

In order to circumvent having few or no observations on a treatment, we modify the

optimal design further by adding a constraint to ensure that we always obtain at

least ` observations from each treatment arm, where ` is a fixed predefined value and

will be referred to as the degree of constraining. To do this, we add a penalty to

the reward function for every combination of the states that give rise to fewer than `

observations on a treatment arm at the end of the trial.

We formulate this model as a Markov decision process with the following elements:

(i) Let zt = (s̃A,t, f̃A,t, s̃B,t, f̃B,t, ñ) be the vector of states representing all the

information that is needed in order to choose an action for patient t, where

s̃A,t, f̃A,t, s̃B,t, f̃B,t are as defined previously in (3.2.1), and ñ = n − t is the

number of patients in the trial remaining to be treated.

(ii) The action set, A = {1, 2}, is composed of Action 1 (a = 1) and Action 2 (a = 2)

as defined in Section 3.2.2.

(iii) The expected (one-period) reward under action a is given byRa(s̃A,t, f̃A,t, s̃B,t, f̃B,t, ñ).
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If we are not at the end of the trial (ñ ≥ 1), then

Ra(s̃A,t, f̃A,t, s̃B,t, f̃B,t, ñ ≥ 1) =


p · s̃A,t

s̃A,t+f̃A,t
+ (1− p) · s̃B,t

s̃B,t+f̃B,t
, if a = 1,

(1− p) · s̃A,t

s̃A,t+f̃A,t
+ p · s̃B,t

s̃B,t+f̃B,t
, if a = 2.

Otherwise, if we are at the end of the trial with no more patients left to treat

(ñ = 0), then

R(s̃A,t, f̃A,t, s̃B,t, f̃B,t, ñ = 0) =

 −n, if sA,t + fA,t < ` or sB,t + fB,t < `,

0, otherwise,

where −n is the penalty chosen because it is a large negative value which will

cause the algorithm to avoid the undesirable states.

(iv) The non-zero transition probabilities, P(zt+1 | zt, a), representing the evolution

of the states from patient t to t + 1 under a = 1 and a = 2 are given as follows

(where w.p. means “with probability”).

When a = 1:

zt+1 =



(s̃A,t + 1, f̃A,t, s̃B,t, f̃B,t, ñ− 1) w.p. p · s̃A,t

s̃A,t+f̃A,t
,

(s̃A,t, f̃A,t + 1, s̃B,t, f̃B,t, ñ− 1) w.p. p · f̃A,t

s̃A,t+f̃A,t
,

(s̃A,t, f̃A,t, s̃B,t + 1, f̃B,t, ñ− 1) w.p. (1− p) · s̃B,t

s̃B,t+f̃B,t
,

(s̃A,t, f̃A,t, s̃B,t, f̃B,t + 1, ñ− 1) w.p. (1− p) · f̃B,t

s̃B,t+f̃B,t
.
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When a = 2:

zt+1 =



(s̃A,t + 1, f̃A,t, s̃B,t, f̃B,t, ñ− 1) w.p. (1− p) · s̃A,t

s̃A,t+f̃A,t
,

(s̃A,t, f̃A,t + 1, s̃B,t, f̃B,t, ñ− 1) w.p. (1− p) · f̃A,t

s̃A,t+f̃A,t
,

(s̃A,t, f̃A,t, s̃B,t + 1, f̃B,t, ñ− 1) w.p. p · s̃B,t

s̃B,t+f̃B,t
,

(s̃A,t, f̃A,t, s̃B,t, f̃B,t + 1, ñ− 1) w.p. p · f̃B,t

s̃B,t+f̃B,t
.

We refer to our proposed design as the constrained randomised dynamic program-

ming (CRDP) design hereafter.

3.3 Simulation Set-Up

We implement all of the above designs in several two-arm trial scenarios via simu-

lations which will now be discussed, along with the performance measures that we

use to compare and evaluate each design. The scenarios created are motivated by a

recently published trial, as reported by Akech et al. (2010), which evaluated the effect

of two different resuscitation treatments for children aged over six months with severe

malnutrition and shock. The aim of the trial was to recruit 90 eligible patients, where

45 would be randomly assigned to group 0 (low dose hypotonic fluid: HSD/5D) and

45 to group 1 (Ringer’s Lactate: RL). The original trial allocated patients between

the two arms with a fixed and equal randomisation probability of 0.5. The primary

response outcomes were binary and available at eight and 24 hours after randomisa-

tion (resolution of shock by 8/24 hours). For this trial, 61 children were recruited,

26 received arm 0 and 29 received arm 1. At the end of the trial, the success rates

observed in groups 0 and 1 at eight hours were 32% and 44%, respectively, and at 24

hours were 22% and 44%, respectively. Although these differences were not statisti-

cally significant, the relatively quickly observed primary endpoint, the life-threatening

nature of the disease, and the fact that patient recruitment is challenging, makes this
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trial an ideal motivating scenario for testing our proposed design.

Assuming that we begin the trial (at t = 0) in a state of equipoise, that is, a state

of genuine uncertainty about which treatment is superior, we let sA,0 = fA,0 = sB,0 =

fB,0 = 1, reducing this to a uniform prior.

We consider the following hypothesis

H0 : θA = θB versus H1 : θA 6= θB,

which will be tested using Fisher’s exact test (Routledge, 2005) for comparing the

success probabilities of two binomial distributions. Fisher’s exact test is probably

the most common choice for binary outcomes and a small sample size. This test is

a conditional test (conditioning on the marginals), which increases the discreteness

and thus the conservatism of the test (Kateri, 2014). This means that the observed

rejection rate is often far below the nominal significance level. Therefore, we set the

nominal significance level to 0.1 throughout so that the observed type I error value

will be closer to 0.05.

Alternatively, we could have followed a Bayesian inference procedure. However,

in a clinical trial context a traditional hypothesis test is expected (due to both this

being a common practice and because of regulatory requirements). Also, since all the

simulations included in this chapter use an uninformative prior, the impact of using a

Bayesian estimator instead of the sample proportion for point estimation and decision

making would be negligible.

In order to create a comprehensive picture of our proposed design, we run our

simulations for a range of combinations of the success probability parameters θA and

θB. Specifically, we consider θA = 0.2 against θB = (0.1, 0.2, . . . , 0.9), and similarly

for θA = 0.5 and 0.8. In the following, we focus on the scenario where θA is fixed

at 0.5 for all θB ∈ (0.1, 0.9) since the patterns observed for the other cases are very

similar.
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Furthermore, we repeat the simulations for different total sample sizes. The results

for n = 75 are reported throughout because this shows a good range of power values

across all scenarios and clearly highlights the differences between each design, thus

enabling us to make better comparisons. The results for n = 25, 50 and 100 are shown

in Figures 3.6.3–3.6.5 of the Appendix 3.6.7.

We evaluate the performance of these designs by simulating 10,000 replications of

each trial and taking the average values over these runs.

3.3.1 Performance Measures

In addition to the operating characteristics, such as the power and type I error rate,

we also consider the ethical performance of each design since this is one of the major

advantages of response-adaptive designs over traditional fixed designs. Specifically,

the criteria we focus on to assess the performance of each design are:

1. Power. The proportion of times we correctly reject H0 in the 10,000 trial

replicates, i.e. the probability of making the correct decision at the end of the

trial, so we want this to be high. This provides an informative measure of how

well a test performs. This is calculated when θA 6= θB.

2. Type I error rate. The proportion of times we incorrectly reject H0, i.e. the

probability of making the incorrect decision at the end of the trial, so we want

this to be low. This is calculated when θA = θB.

3. Percentage of patients allocated to the superior treatment arm. This

measures the ethical performance of each design, which we wish to maximise.

4. Average bias of the estimator. This provides a measure of the bias ex-

hibited by the treatment effect estimator, where we define treatment effect as

the treatment difference, ∆̂ = θ̂A − θ̂B. The estimator of θA and θB is simply

the sample proportion θ̂A = sA,n/NA and θ̂B = sB,n/NB, respectively. This is
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the observed proportion of successes in either treatment group by the end of

the trial (at time t = n). The average bias of this estimator is defined to be

the difference between the estimated success probability difference and the true

success probability difference, that is,

Bias(∆̂) = E(∆̂−∆) = E(θ̂A − θ̂B)− (θA − θB) . (3.3.1)

5. Mean squared error (MSE) of the estimator. The MSE provides a measure

of the quality and variability of the estimator, ∆̂, and is defined by

MSE(∆̂) = E
[
(∆̂−∆)2

]
,

which can be expressed in terms of the bias and variance of the estimator as,

MSE(∆̂) = Bias(∆̂)2 + Var(∆̂). (3.3.2)

3.4 Simulation Results and Design Comparison

We compare our proposed design to the alternative designs outlined in Section 3.2

based upon the performance measures highlighted in Section 3.3.1. We set p = 0.9

as the degree of randomisation and ` = 0.15n as the degree of constraining in our

proposed CRDP design, which we believe yields robust design characteristics for many

scenarios of interest and could be used as a quick rule of thumb. Alternatively, ` could

be heuristically determined as the minimum sample size per arm required to attain a

power of (1 − γ) in a fixed randomised design, where (1 − γ) ≤ (1 − β) and (1 − β)

is the power level obtained by a fixed randomised trial of size n. In the following two

paragraphs, we describe a more formal heuristic approach to determine p and ` when

higher precision is needed to trade-off power and patient benefit.
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We tried a range of values for ` ∈ (0.05n, 0.50n) (where 0.50n corresponds to

fixed equal randomisation) and found that as ` increases, the power of the design

increases hyperbolically, while the percentage of patients allocated to the superior

treatment decreases linearly. This is illustrated in Figure 3.6.1 of the Appendix 3.6.3.

We recommend choosing ` ∈ (0.10n, 0.15n) because for values of ` < 0.10n, the power

is insufficient, and for values of ` > 0.15n, the very small gains in power do not

outweigh the considerable reduction in the percentage of patients allocated to the

superior treatment.

Similarly, we tried a range of values for p ∈ (0.5, 1) (where p = 0.5 and p = 1 cor-

respond to fixed equal randomisation and the DP design, respectively) and observed

that there is a decrease in power, but a large increase in the percentage of patients

allocated to the superior treatment as p increases from 0.5 to 0.9; see Tables 3.6.2–

3.6.5 in the Appendix 3.6.4 which illustrate this for the RDP design (i.e. without the

constraint). We take p = 0.9 since this produces a good balance between the power

and patient benefit across a wide range of scenarios and sample sizes.

3.4.1 Power and Type I Error

Figure 3.4.1 illustrates the changes in statistical power, and type I error rate, for

each design across a range of scenarios in a study with 75 observations (where the

result for θA = θB corresponds to the type I error rate). It can be seen that fixed

randomisation attains the highest power for all scenarios, whereas that of the DP

and WI designs is drastically reduced, even for large treatment differences. This is

what we would expect since it is not possible to maximise both power and patient

successes simultaneously and, unlike the fixed design, the DP design aims to maximise

the expected number of successes within the trial. Therefore, although the DP and

WI designs are able to identify the superior treatment arm, they are unable to do so

with sufficient statistical significance. We can see that the power of these designs lies
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below 0.3 for all θB ∈ (0.1, 0.9), confirming that they are severely underpowered. As

a result, they are clearly unsuitable to implement in practice.

Figure 3.4.1 also shows that once randomisation is incorporated into the DP design

to form RDP, there is a substantial improvement in power compared to the DP and

WI designs, which even exceeds the 0.8 level (illustrated by the upper dashed line)

for some scenarios. Our proposed CRDP achieves even better power, with its power

values lying much closer to those for the fixed design than the other bandit designs.

The obvious patterns, such as the power increasing with the size of the treatment

difference for each design, are apparent in Figure 3.4.1. Furthermore, additional

evaluations for other sample sizes show similar patterns and can be seen in Figure

3.6.3 of the Appendix 3.6.7.

Turning our attention to the type I error rates, we see that the type I error rate of

both the DP and WI designs lies markedly below the nominal significance level at 0.1

(illustrated by the lower dashed line on Figure 3.4.1) and is therefore greatly deflated

for both designs. However, all of the other designs attain similar, higher observed

type I error rates which are much closer to the nominal significance level and thus

have better controlled type I error rates.

3.4.2 Patient Benefit

Figure 3.4.2 shows the percentage of patients (out of a total of 75) that receive the

superior treatment within the trial. Note that when θA = θB, we define treatment A

as the superior treatment for illustrative purposes and all designs show that approxi-

mately 50% of patients receive the superior treatment in this case, as expected.

The DP and WI designs perform the best, resulting in the highest percentage of

patients receiving the superior treatment. This is not at all surprising considering

they are designed to maximise the expected total reward (patient successes) within

the trial in order to satisfy the patient benefit criterion.
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Figure 3.4.1: The changes in power and type I error for each design when n = 75,
θA = 0.5 and θB ∈ (0.1, 0.9). The upper dashed line at 0.8 represents the desired
power level, and the lower dashed line at 0.1 represents the nominal significance level.

At the other extreme, by design, the fixed randomised design allocates only 50%

of the patients to the superior treatment in every scenario. Although the RPW rule

does outperform the fixed design in terms of the patient benefit, the percentage of

patients that are on the superior treatment is still much lower compared to all of the

other designs. It is useful to note that the limiting allocation proportion of patients

on treatment A for the RPW rule is given by (1−θB)/(2−θA−θB) (Wei and Durham,

1978).

Figure 3.4.2 shows that the RDP and CRDP designs perform very well and the

percentage of patients receiving the superior treatment is still sufficiently high, with

the CRDP line lying slightly below the RDP line due to the addition of the constraint.

The largest difference between CRDP and DP is approximately 10%, which occurs

at either end of the plot when the size of the treatment difference is at its largest.

Moreover, our proposed CRDP design allocates a maximum of approximately 21% and

35% more patients to the superior treatment than the RPW rule and fixed design,

respectively, which occurs when θB = 0.1.
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For all designs (excluding the fixed), Figure 3.4.2 shows that the percentage of pa-

tients allocated to the superior treatment increases with the magnitude of the treat-

ment difference, with the higher values occurring at the tails of the graph which

correspond to the larger treatment differences. Furthermore, similar patterns are

observed for other sample sizes; see Figure 3.6.4 in Appendix 3.6.7.
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Figure 3.4.2: The percentage of patients on the superior treatment arm for each design
when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9).

3.4.3 Bias

Figure 3.4.3 shows the average bias of the difference in the sample proportions as an

estimator for the treatment effect, as defined by (3.3.1), in a study with 75 obser-

vations. We see that the fixed randomised design produces the best result in terms

of the bias, with its associated estimator attaining zero bias for all scenarios, as it

should.

At the other extreme, the DP and WI designs exhibit the largest statistical bias

with a maximum absolute value of 0.2 occurring when θB = 0.9. Therefore, the

corresponding estimates following such bandit designs will be biased due to the un-

derlying dependence structure induced in the resulting observations. This is reflected
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in Table 3.4.1 which directly reports the raw estimates of the success probabilities,

θ̂A and θ̂B. Table 3.4.1 shows that in the DP design, the estimate of the success

probability for the inferior arm is substantially underestimated. The estimate for the

superior arm is also underestimated, but less than for the inferior arm, particularly

when the treatment difference is relatively small. This implies that the estimate of

the treatment difference, ∆̂, is generally overestimated. Since bandit designs allocate

fewer patients to the inferior treatment, this may partially explain why the estimate

corresponding to this arm is worse than that of the superior arm because there are

fewer observations to base the inference on.

Once randomisation is incorporated into the DP design, we see from Figure 3.4.3

that the bias is drastically reduced across all scenarios, with a maximum absolute

value of 0.027 which is 85% smaller than the worst-case bias of the other bandit

designs. Moreover, our proposed CRDP design performs even better than the RDP

and further reduces the bias of the treatment effect estimator. In fact, the bias values

for our proposed CRDP are very close to zero for all scenarios with a maximum

bias value of only 0.014 which is 93% smaller than the worst-case bias for the DP

design. As such, the bias following our proposed CRDP is negligible compared to the

very large bias exhibited by the other bandit designs and hence, the treatment effect

estimator following our proposed CRDP design is essentially mean-unbiased. Again,

this is reflected in Table 3.4.1 which shows that in our proposed CRDP design, θ̂A and

θ̂B are now much closer to their true values. Moreover, there is a large improvement

in the estimate of the success probability for the inferior arm compared to the DP

design since it is now only slightly underestimated.

Note that we can clearly see from Figure 3.4.3 that all designs correctly attain a

bias of zero when θA = θB. Similar results for different n are provided in Figure 3.6.5

of Appendix 3.6.7.
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Figure 3.4.3: The average bias of the treatment effect estimator when n = 75, θA = 0.5
and θB ∈ (0.1, 0.9).

True Fixed DP CRDP

θA θB θ̂A (s.e.) θ̂B (s.e.) θ̂A (s.e.) θ̂B (s.e.) θ̂A (s.e.) θ̂B (s.e.)

0.500 0.100 0.500 (0.083) 0.100 (0.050) 0.498 (0.062) 0.057 (0.096) 0.499 (0.064) 0.097 (0.085)

0.500 0.200 0.500 (0.083) 0.201 (0.065) 0.493 (0.080) 0.119 (0.132) 0.496 (0.070) 0.187 (0.105)

0.500 0.300 0.500 (0.083) 0.301 (0.075) 0.474 (0.118) 0.191 (0.156) 0.489 (0.084) 0.275 (0.109)

0.500 0.400 0.500 (0.083) 0.401 (0.080) 0.434 (0.162) 0.279 (0.176) 0.475 (0.098) 0.364 (0.107)

0.500 0.500 0.500 (0.083) 0.500 (0.082) 0.386 (0.192) 0.389 (0.192) 0.462 (0.105) 0.464 (0.106)

0.500 0.600 0.500 (0.083) 0.600 (0.080) 0.340 (0.216) 0.518 (0.193) 0.461 (0.111) 0.575 (0.099)

0.500 0.700 0.500 (0.083) 0.699 (0.075) 0.303 (0.240) 0.652 (0.172) 0.472 (0.123) 0.689 (0.080)

0.500 0.800 0.500 (0.083) 0.800 (0.065) 0.290 (0.266) 0.780 (0.129) 0.484 (0.136) 0.797 (0.058)

0.500 0.900 0.500 (0.083) 0.900 (0.049) 0.291 (0.290) 0.895 (0.074) 0.493 (0.147) 0.900 (0.039)

Table 3.4.1: The estimates of success probabilities, θ̂A and θ̂B, and corresponding
standard errors (s.e.) for the success probabilities of treatments A and B, respectively,
compared to their true values θA and θB. These results correspond to the scenario in
which n = 75, θA = 0.5 and θB ∈ (0.1, 0.9).

3.4.4 Mean Squared Error

Figure 3.4.4 shows the mean squared error (MSE) of the treatment effect estimator,

as defined by (3.3.2), for a study with 75 observations. The fixed randomised design
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results in the smallest MSE, with values fairly constant and close to zero for all

scenarios.

The DP and WI designs exhibit the largest MSE values, with the MSE of the WI

design exceeding those of the DP design for all scenarios. This is a direct consequence

of the large bias observed in Figure 3.4.3. Moreover, these designs experience the

largest increase in MSE as θB increases from 0.1 to 0.7, after which point they remain

fairly constant. Specifically, as θB increases from 0.1 to 0.7, the MSE jumps from

0.016 to 0.141 for the WI design, and from 0.015 to 0.133 for the DP design. We also

notice from Figure 3.4.4 that the associated MSE plots for the DP and WI designs

are not symmetric about θB = 0.5. This is a result of the variance of the estimator

increasing markedly as θB increases from 0.1 to 0.6, in addition to the bias for the DP

and WI being much larger for larger values of θB.

Once randomisation is incorporated into the DP, the MSE is reduced for all sce-

narios, from a worst-case value of 0.141 in the WI design to a worst-case value of

0.032 in the RDP design which is a 77.3% improvement. Moreover, our proposed

CRDP design improves the MSE values even further, with a lower and upper bound

of 0.011 and 0.026, respectively. The majority of the MSE values lie around 0.030

for the RDP design and 0.020 for our proposed CRDP design. In contrast to the

steep curves of the DP and WI designs, the MSE values associated with the RDP

and CRDP designs remain fairly constant (as with the fixed and RPW designs), thus

giving rise to the relatively flat curves visible in Figure 3.4.4. Furthermore, we see

that the curve corresponding to our proposed CRDP lies fairly close to the curve for

the fixed design. Thus, the MSE values of the treatment effect estimator following

our proposed CRDP design are comparable to those of the fixed design, staying close

to zero for all scenarios, and are a huge improvement on those exhibited by the DP

and WI bandit designs.
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Figure 3.4.4: The mean squared error (MSE) of the treatment effect estimator when
n = 75, θA = 0.5 and θB ∈ (0.1, 0.9).

3.4.5 Overall Performance

Figure 3.4.5 shows a star plot for each design against power, patient benefit, average

bias and MSE of the treatment effect estimator in a trial with 75 patients when

θA = 0.5 and θB = 0.2. The most desirable values lie towards the outer edge of the

star plot with the least favourable values towards the centre. Figure 3.4.5 summarises

the key features of each design showing that the fixed design performs very well with

respect to power, average bias and MSE but poorly with respect to patient benefit,

whilst in contrast the DP design performs poorly with respect to power, average bias

and MSE but very well with respect to patient benefit. Our proposed CRDP design,

on the other hand, has values lying near to the outer edge of the star plot for power,

average bias, MSE and patient benefit, thus showing that it performs well with respect

to all of the performance measures. Table 3.6.6 in Appendix 3.6.6 reports additional

combined measures that complement Figure 3.4.5 to compare the designs.
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Figure 3.4.5: Star plot showing the performance of each design with respect to power,
patient benefit, absolute average bias and MSE of the treatment effect estimator when
n = 75, θA = 0.5 and θB = 0.2. The best value achieved for each performance measure
is depicted at the outer edge. (Note that the absolute average bias and MSE axes
have been inverted so that the smaller (favourable) values are towards the outer edge,
unlike the power and patient benefit axes which have their larger values towards the
outer edge.)

3.4.6 CRDP Patient Allocation

Figure 3.4.6 shows the average allocation probability to the superior treatment B

under the CRDP design for every patient t in a trial with 75 patients when θA = 0.5

and θB = 0.7. This figure illustrates how the CRDP design adaptively allocates

patients between the two treatments over time. The average allocation probability to

a superior arm grows steadily through the trial towards the degree of randomisation

selected (p = 0.9), but without reaching it in this scenario. As the trial approaches

the treatment decisions for its final 15 patients, this probability markedly oscillates in

order to satisfy the degree of constraining. This indicates that an important number

of allocations to the inferior arm under the CRDP design tend to occur by the end

of the trial rather than at the beginning of it4. Figure 3.4.7 also illustrates this point

4Note that this could circumvent the problem of accrual bias mentioned in Section 2.1.1.
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by plotting the observed patient allocations during five different trial realisations.
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Figure 3.4.6: Probability of allocating a patient to the superior treatment B for CRDP
when θA = 0.5 and θB = 0.7 in a trial of size n = 75.

● ● ●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●

● ● ● ●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

●

● ●

Index

re
s[

i, 
]

1

● ● ●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

● ●

● ●

● ● ● ●

● ● ●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

Index

re
s[

i, 
]

2

● ● ●

●

●

●

●

● ●

● ● ● ● ● ●

●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

●

● ● ● ●

●

●

●

● ● ● ● ● ●

Index

re
s[

i, 
]

3

● ●

● ● ● ● ●

●

●

● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

Index

re
s[

i, 
]

4

●

●

●

● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ●

Index

re
s[

i, 
]

5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

patient number

D
iff

er
en

t r
ea

lis
at

io
ns

Figure 3.4.7: Patient allocations for CRDP when θA = 0.5 and θB = 0.7 in a trial of
size n = 75 for five different trial realisations. Upper dots represent allocations to the
superior treatment B while lower dots represent allocations to the inferior treatment
A.
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3.5 Discussion

In this chapter, we evaluate different methods for allocating patients to treatments.

The DP design performs very well when considering patient benefit compared to

traditional fixed randomisation. However, this method suffers from an extremely low

power to detect a significant treatment difference, biased estimates of the treatment

effect and a large MSE. Moreover, it is completely deterministic and thus at risk of

many possible sources of bias.

At the other extreme, fixed randomisation performs very well in terms of the

statistical criteria, exhibiting high power, unbiased estimates of the treatment effect

and small MSE. However, it allocates a large proportion of patients to the inferior

treatment arm. This is particularly detrimental for rare, and fatal, diseases in which

a substantial proportion of patients exhibiting the disease may be included in the trial

and therefore the priority should be to treat these patients as effectively as possible.

We propose modifications to the DP design which overcome its current limitations

and offer patient benefit advantages over a fixed randomised design by randomising

in an optimal way and forcing a minimum number of patients on each arm. Our

formal, mathematical approach grounded in decision theory creates a continuum of

designs, with DP and fixed randomisation at the extremes, which offers freedom in

choosing the most appropriate balance by fixing a degree of randomisation and a

degree of constraining. This greatly increases the prospects of a bandit-based design

being implemented in real clinical trial practice, particularly for trials involving rare

diseases and small populations where the fixed randomisation approach is no longer

the most appropriate design to use and is often not feasible due to the small sample

sizes involved.

Our proposed CRDP design, with suggested degree of randomisation p = 0.9 and

degree of constraining ` = 0.15n, seems to perform robustly in a range of simulated

scenarios (not all of which are reported here). The power is only slightly lower than
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with fixed randomisation, while almost as many patients are randomised to the su-

perior treatment as in the DP design. Hence, this design strikes a very good balance

in terms of the patient benefit and power trade-off, providing both power and ethical

advantages, which acknowledges that clinical trials are multiple objective experiments.

The average bias and MSE of the treatment effect estimator following our proposed

CRDP design are very low. It is well known that selection results in biased estimators

(see e.g. Bauer et al., 2010). This is also true for group-sequential trials which are,

however, routinely used in practice nowadays because the benefit from these designs

can outweigh the bias incurred, particularly in the case of rare diseases. In order

to make this assessment, it is important to determine the magnitude of the bias (as

well as the benefits of the design) and hence the evaluations provided are essential for

these novel methods to be applied in a real-life trial. In cases where the magnitude

of the bias could be considered excessive, there exists a bias-corrected estimator that

can be used (which comes at the price of a notably increased variability); see Bowden

and Trippa (2017). Coad and Ivanova (2001) also study the bias of the maximum

likelihood estimators of the success probabilities following several response-adaptive

designs in the two-arm, binary response case.

In this chapter, we consider a two-armed trial with binary endpoints for simplicity,

yet the principles used easily extend to multi-arm trials. An area of further work is to

generalise the proposed design so it can be applied to other endpoints. In addition,

a natural extension of this work is to modify the heuristic WI policy in a similar

way as we have with the optimal DP design since index policies are conceptually

more intuitive (we allocate the patient to the treatment with the highest index), and

hence easier to communicate and be understood by clinicians. Moreover, the WI is

potentially very important for the extension to more than two treatment arms since

the DP quickly becomes computationally intractable while the WI is still feasible

(Villar et al., 2015a).
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In our proposed design, each patient’s response is used to inform the subsequent

allocation decision. This relies on the assumption that patient responses become

available before the next patient receives treatment (which would be the case if patient

responses were quickly observed, for example). In many clinical trial settings, this is

unrealistic because often a treatment takes a substantial length of time to induce a

response and so it is very likely that the accrual rate will exceed the response rate.

However, in a rare disease setting, the accrual rate is likely to be relatively slow with

some patients being recruited over several years, and hence this assumption would

be reasonable. Further research is required to address the problem of incorporating

delayed responses into bandit-based designs which would increase the generalisability

of our proposed design5.

Moreover, our proposed design can only be applied to relatively small-scale trials

since the underlying backwards induction algorithm suffers from the curse of dimen-

sionality (Bellman, 1961) and currently attains its practical limit at n = 200. Again,

this is not an issue for a rare disease setting in which the number of patients available

for participation in the trial is limited, or clinical trials involving children, for exam-

ple, in which recruitment is challenging (Hampson et al., 2014). In fact, many phase

II trials have no more than 200 patients, even in common diseases.

Additional extensions of this work include considering the effect of changing the

prior distribution assigned to the unknown success probabilities. For example, a Beta

prior with carefully chosen parameters could alternatively be used if the investigator

wishes to reflect a greater amount of knowledge or a bias in favour of a particular

treatment, without increasing the complexity of the problem. See Hampson et al.

(2014) in which the unknown model parameters of the prior distribution are deter-

mined by eliciting expert opinion and incorporating historical data from a related

trial.

5See Chapters 4 and 5.
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3.6 Appendix

3.6.1 Backward Induction Algorithm

• If t = n, there is nothing to do because all n patients have already been

treated and their outcomes observed. Thus, Fn(s̃A,n, f̃A,n, s̃B,n, f̃B,n) = 0 ∀

s̃A,n, f̃A,n, s̃B,n, f̃B,n.

• If t = n− 1, there is only one patient left to treat and interest is in determining

which treatment to allocate to this patient ∀ s̃A,n−1, f̃A,n−1, s̃B,n−1, f̃B,n−1 that

sum to n− 1. There are two possibilities:

– If treatment A is allocated to the remaining patient, then we compute the

expectation

FAn−1(s̃A,n−1, f̃A,n−1, s̃B,n−1, f̃B,n−1) =
s̃A,n−1

s̃A,n−1 + f̃A,n−1

·1+
f̃A,n−1

s̃A,n−1 + f̃A,n−1

·0,

where
s̃A,n−1

s̃A,n−1+f̃A,n−1
is the expectation of θA with respect to a Beta(s̃A,n−1, f̃A,n−1)

distribution, and
f̃A,n−1

s̃A,n−1+f̃A,n−1
is the probability of a failure if treatment A

is allocated.

– Alternatively, if treatment B is allocated to the remaining patient, then

we compute the expectation

FBn−1(s̃A,n−1, f̃A,n−1, s̃B,n−1, f̃B,n−1) =
s̃B,n−1

s̃B,n−1 + f̃B,n−1

·1+
f̃B,n−1

s̃B,n−1 + f̃B,n−1

·0,

where
s̃B,n−1

s̃B,n−1+f̃B,n−1
is the expectation of θB with respect to a Beta(s̃B,n−1, f̃B,n−1)

distribution, and
f̃B,n−1

s̃B,n−1+f̃B,n−1
is the probability of a failure if treatment B

is allocated.
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Interest is in choosing the optimal allocation such that

Fn−1(s̃A,n−1, f̃A,n−1, s̃B,n−1, f̃B,n−1) =

max{FAn−1(s̃A,n−1, f̃A,n−1, s̃B,n−1, f̃B,n−1), FBn−1(s̃A,n−1, f̃A,n−1, s̃B,n−1, f̃B,n−1)}.

Thus, if FAn−1(s̃A,n−1, f̃A,n−1, s̃B,n−1, f̃B,n−1) > FBn−1(s̃A,n−1, f̃A,n−1, s̃B,n−1, f̃B,n−1),

then it is optimal to allocate the remaining patient to treatment A, and vice

versa. If they are equal, then both treatments are optimal choices.

• The next step is if t = n − 2, i.e. when there are two remaining patients to be

allocated. To determine which treatment to allocate to patient n− 1, there are

two possibilities:

– If treatment A is allocated to patient n − 1, then we compute the expec-

tation

FAn−2(s̃A,n−2, f̃A,n−2, s̃B,n−2, f̃B,n−2) =

s̃A,n−2

s̃A,n−2 + f̃A,n−2

·
(

1 + Fn−1(s̃A,n−2 + 1, f̃A,n−2, s̃B,n−2, f̃B,n−2)
)

+

f̃A,n−2

s̃A,n−2 + f̃A,n−2

·
(

0 + Fn−1(s̃A,n−2, f̃A,n−2 + 1, s̃B,n−2, f̃B,n−2)
)
.

– Similarly, if treatment B is allocated, then we compute the expectation

FBn−2(s̃A,n−2, f̃A,n−2, s̃B,n−2, f̃B,n−2) =

s̃B,n−2

s̃B,n−2 + f̃B,n−2

·
(

1 + Fn−1(s̃A,n−2, f̃A,n−2, s̃B,n−2 + 1, f̃B,n−2)
)

+

f̃B,n−2

s̃B,n−2 + f̃B,n−2

·
(

0 + Fn−1(s̃A,n−2, f̃A,n−2, s̃B,n−2, f̃B,n−2 + 1)
)
.

• et cetera.

These steps are just iterations, and can be expressed more succinctly in the general
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form as follows.

If treatment A is allocated to the next patient, then the expected number of

successes for patients t+ 1 through n under an optimal policy is

FAt (s̃A,t, f̃A,t, s̃B,t, f̃B,t) =
s̃A,t

s̃A,t + f̃A,t
·
(

1 + Ft+1(s̃A,t + 1, f̃A,t, s̃B,t, f̃B,t)
)

+

f̃A,t

s̃A,t + f̃A,t
· Ft+1(s̃A,t, f̃A,t + 1, s̃B,t, f̃Bt).

On the other hand, if treatment B is allocated to the next patient, then the

expected total reward under an optimal policy is

FBt (s̃A,t, f̃A,t, s̃B,t, f̃B,t) =
s̃B,t

s̃B,t + f̃B,t
·
(

1 + Ft+1(s̃A,t, f̃A,t, s̃B,t + 1, f̃B,t)
)

+

f̃B,t

s̃B,t + f̃B,t
· Ft+1(s̃A,t, f̃A,t, s̃B,t, f̃B,t + 1).

Therefore, F satisfies the recurrence

Ft(s̃A,t, f̃A,t, s̃B,t, f̃B,t) = max
{
FAt (s̃A,t, f̃A,t, s̃B,t, f̃B,t), FBt (s̃A,t, f̃A,t, s̃B,t, f̃B,t)

}
.

3.6.2 Computational Speed

Table 3.6.1 illustrates the computational speed of the backwards induction algorithm

to compute the allocation policy of the DP design on a standard laptop with 16 GB

of RAM. The maximum trial size that can be computed on a standard laptop using

R is 215. Although trials of sizes larger than 215 are very unlikely to occur in a rare

disease context, computations of the DP design are feasible on a standard performance

workstation (1 TB of RAM) for 215 < n < 600. Trials of a size up to 3500 patients

would be feasible with today’s number one supercomputer (with 1.3 PB of RAM).
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n EPS Run Time RAM

10 0.60218 0.01s 0.1 MB

30 0.63066 1s 6.2 MB

50 0.63993 6s 47.7 MB

70 0.64485 24s 183.2 MB

90 0.64799 1m:04s 0.56 GB

110 0.65020 2m:22s 1.1 GB

130 0.65186 4m:37s 2.1 GB

150 0.65316 8m:03s 3.86 GB

200 0.65547 25m:20s 11.9 GB

Table 3.6.1: Expected proportion of successes (EPS) when sA,0 = fA,0 = sB,0 =
fB,0 = 1, i.e. EPS = F0(1, 1, 1, 1)/n, run time in minutes (m) and seconds (s) and
RAM memory requirements of the DP design on a standard laptop.

3.6.3 Choosing the Degree of Constraining, `

Figure 3.6.1 illustrates the non-linearity of the power, based on which we recommend

` = 0.15n in our proposed CRDP design.

5 10 15 20 25 30 35
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70
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90
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0

Degree of constraining
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% on superior

Figure 3.6.1: The effect of changing the degree of constraining, `, on the power and
percentage of patients on the superior treatment when θA = 0.2 and θB = 0.8 for the
constrained DP design (without randomisation). The left and right dashed vertical
lines correspond to ` = 0.10n and ` = 0.15n respectively, where n = 75 in this case.
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3.6.4 Choosing the Degree of Randomisation, p

Tables 3.6.2–3.6.5 illustrate the effect of varying degrees of randomisation for a range

of different scenarios, based on which we recommend p = 0.9 in our proposed CRDP

design.

p Bias MSE Type I Error EPS % on superior

0.5 0.000 0.004 0.035 0.200 50.0

0.6 -0.002 0.004 0.034 0.200 50.1

0.7 -0.001 0.005 0.027 0.200 50.2

0.8 0.000 0.005 0.022 0.200 50.0

0.9 0.000 0.006 0.008 0.200 50.2

1.0 0.001 0.008 0.000 0.200 49.7

Table 3.6.2: The effect of changing the degree of randomisation, p, on the perfor-
mance measures when n = 75 and θA = θB = 0.2 for the RDP design (without the
constraint).

p Bias MSE Power EPS % on superior

0.5 -0.001 0.004 0.428 0.300 50.0

0.6 -0.002 0.005 0.406 0.315 57.3

0.7 -0.003 0.006 0.355 0.329 64.5

0.8 -0.007 0.007 0.289 0.344 71.4

0.9 -0.018 0.010 0.183 0.356 77.9

1.0 -0.058 0.017 0.021 0.368 83.6

Table 3.6.3: The effect of changing the degree of randomisation, p, on the performance
measures when n = 75, θA = 0.2 and θB = 0.4 for the RDP design (without the
constraint).
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p Bias MSE Power EPS % on superior

0.5 -0.001 0.004 0.938 0.400 50.0

0.6 -0.002 0.005 0.935 0.437 59.1

0.7 -0.002 0.007 0.910 0.473 68.2

0.8 -0.005 0.009 0.830 0.509 77.3

0.9 -0.015 0.015 0.636 0.544 86.0

1.0 -0.089 0.03 0.070 0.577 94.2

Table 3.6.4: The effect of changing the degree of randomisation, p, on the performance
measures when n = 75, θA = 0.2 and θB = 0.6 for the RDP design (without the
constraint).

p Bias MSE Power EPS % on superior

0.5 -0.001 0.004 1.000 0.500 50.0

0.6 -0.001 0.005 1.000 0.557 59.6

0.7 -0.001 0.007 0.999 0.615 69.2

0.8 -0.004 0.010 0.995 0.672 78.8

0.9 -0.009 0.019 0.937 0.730 88.3

1.0 -0.100 0.043 0.118 0.786 97.6

Table 3.6.5: The effect of changing the degree of randomisation, p, on the performance
measures when n = 75, θA = 0.2 and θB = 0.8 for the RDP design (without the
constraint).
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3.6.5 CRDP Patient Allocation: Other Scenarios

Figure 3.6.2 complements Figure 3.4.6 to show average allocation probabilities of our

proposed CRDP design in other scenarios.
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Figure 3.6.2: Probability of allocating a patient to treatment B for CRDP when
θA = 0.5 and θB = {0.5, 0.6, 0.8, 0.9} in a trial of size n = 75 estimated over 10,000
simulations.
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3.6.6 Combined Performance Measures

Table 3.6.6 summarises the performance of the four key features (power, average bias,

MSE and patient benefit) per design by showing the following measures: (i) sum of the

distance of each key feature from the best achievable value (SDis), (ii) the maximum

difference among each of the four key features from the best achievable value (MD),

(iii) sum of the deviations of each key feature from the fixed randomisation design

(SDev).

Design SDis MD SDev

CRDP 32.925 24.7 53.513

RDP 36.936 29.7 63.009

DP 74.439 72.3 95.494

WI 73.307 73.2 113.695

RPW 30.714 29.7 11.801

Fixed 40.512 50.0 0

Table 3.6.6: The summary measures of performance in terms of the four key features.
SDis: sum of the distance of each key feature from the best achievable value; MD:
maximum difference among each of the key features from the best achievable value;
SDev: sum of the deviations of each key feature from the fixed randomisation de-
sign. Note that these should be treated with some caution since the key features are
measured on different scales.
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3.6.7 Results for Other Sample Sizes

Figures 3.6.3–3.6.5 complement Figures 3.4.1–3.4.3, respectively, to compare the per-

formance of our proposed CRDP design with alternative designs for different sample

sizes.
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Figure 3.6.3: The changes in power and type I error for each design when θA = 0.5
and θB ∈ (0.1, 0.9) for varying sample sizes. The upper dashed line at 0.8 represents
the desired power level, and the lower dashed line at 0.1 represents the nominal
significance level.
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Figure 3.6.4: The percentage of patients on the superior treatment for each design
when θA = 0.5 and θB ∈ (0.1, 0.9) for varying sample sizes.
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Figure 3.6.5: The average bias of the treatment effect estimator when θA = 0.5 and
θB ∈ (0.1, 0.9) for varying sample sizes.



Chapter 4

Extension to Delayed Responses

4.1 Introduction

In Chapter 3, each patient’s response is used to inform the subsequent allocation de-

cision which relies on the assumption of immediate patient responses or, more specif-

ically, that a patient’s response is available before the next patient enters the trial.

Most response-adaptive designs in the literature are typically formulated under this

assumption (Cheung et al., 2006; Biswas et al., 2008, Section 3.7). Although this

may be appropriate for some clinical contexts, such as trials of surgical interventions

(Rosenberger and Lachin, 2016, Chapter 12), trials for diseases with a slow recruit-

ment rate (e.g. rare diseases) or rapidly observed endpoint (e.g. acute diseases), it is

unrealistic in many clinical trial settings (e.g. oncology trials). This is because, not

only may a treatment take a substantial length of time to induce a response, but there

may also be an administrative delay in obtaining the response (Pocock, 1983) or im-

plementing the adaptation to the allocation probabilities which, as Wason et al. (2019)

discusses, “will reduce the efficiency advantage of an adaptive approach in exactly the

same way as using an outcome that takes longer to observe”. As a result, responses

from all of the previously allocated patients may not be available before allocation of

80
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the next patient; we will refer to these responses, or patients, as being in the pipeline1.

One simple approach is to base the allocation decision only on the currently observed

data and ignore the pipeline data. However, this can lead to biased parameter es-

timates and incorrect allocation decisions (Xu and Yin, 2014). Another possibility

is to wait until all of the treated patients have responded before allocating the next

patient(s), but this is impractical since the trial will take much longer (Wason et al.,

2019). Moreover, it is unethical to withhold treatment from trial participants (Yin,

2012, Chapter 7). Even though it has long been highlighted that “useful methods

must have treatment assignment rules that do not require instantaneous observations

and reporting” (Simon, 1977), the problem of how (response-)adaptive designs can be

adjusted to incorporate delayed responses remains an important research question.

Several authors have illustrated the effect of delayed responses on particular response-

adaptive designs (predominantly urn models), either by simulation, e.g. Robinson

(1983); Rosenberger and Seshaiyer (1997); Rosenberger (1999); Ivanova and Rosen-

berger (2000); Kuleshov and Precup (2000); Karrison et al. (2003); Zhang and Rosen-

berger (2006, 2007); Wason et al. (2019), or theoretically, e.g. Bai et al. (2002) for

urn models; Hu et al. (2008) for the doubly adaptive biased coin design. However,

few have provided potential solutions to accommodate for the delay (which has been

pointed out in many papers, e.g. Hardwick et al. (2006); Caro and Yoo (2010); Chick

et al. (2017)). The inability of most response-adaptive designs to account for the

delay has long been cited as one of the greatest limitations and barriers to their im-

plementation in practice (see Simon, 1977; Armitage, 1985; Zhang and Rosenberger,

2006; Villar et al., 2015a,b; Smith and Villar, 2018; Ahuja and Birge, 2019). Sverdlov

et al. (2012), for example, describe it as “a major stumbling block in implementing

adaptive designs”, and Rosenberger et al. (2012, Section 4) list it as one of the main

1The pipeline includes those patients who have been allocated to a treatment but have not yet
responded. This is consistent with the terminology used in related literature, e.g. Hampson and
Jennison (2013); Chick et al. (2017).
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criticisms of RAR. As such, there is a strong interest amongst the statistical and

clinical trial community in whether RAR methods can be extended to accommodate

delayed responses (see e.g. the comment made by D. S. Coad in the Discussion of the

paper by Hampson and Jennison (2013)).

Consequently, the main objective of this chapter is to take a step towards address-

ing this problem by not only exploring the impact of delayed responses on the designs

introduced in Chapter 3, but also proposing a method which can utilise the pipeline

information in the adaptations. First, we outline some of the few existing designs

that do adjust for delays.

Eick (1988b) introduces a model for a bandit problem with delayed responses in the

context of a two-armed clinical trial where the distribution of one arm is known, thus

referred to as a one-armed bandit, and the other has a geometric response time. The

DP solution is presented and compared to the optimal solution (designed to maximise

expected total patient lifetime) for the immediate response case. These results have

been further extended by Wang (2000) and Wang (2002). Another paper by Eick

(1988a) proves the existence and optimality of the Gittins index for the one-armed

delayed response bandit when the discount factor is less than 1/2.

Biswas and Coad (2005) comment that “most of the available literature on adap-

tive designs overlooks possible delays in responses” and suggest how delays can be

incorporated into their proposed multi-armed adaptive design for continuous multi-

variate responses.

Hardwick et al. (2006) consider a two-armed trial with Bernoulli responses in

which patients arrive via a Poisson process and their response times are assumed to

follow independent exponential distributions. The objective function of interest is to

maximise the expected number of patient successes during the trial. Therefore, they

model this problem as a two-armed bandit with delay which, in theory, is amenable

to solution by DP to yield the optimal design. However, as discussed in Chapter
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2, this approach is already computationally intensive and the additional complexity

caused by the delay increases this even further. They discuss two alternatives based

on the recursive DP equations: the first was computationally infeasible at the time of

publication, therefore they present a second solution which reduces the computational

requirements. In this chapter, we take a similar approach to Hardwick et al. (2006)

by proposing, and implementing, a design for the delayed response bandit based on

the DP equations, yet there are some important differences which will be highlighted

in Chapter 5.

Xu and Yin (2014) propose a two-stage non-parametric fractional scheme based

on RAR to address the issue of delayed response by treating unobserved outcomes as

censored and calculating their fractional contribution to the response probability. See

also Chick et al. (2017) for another, more recent, example of a design for a two-armed,

sequential trial adjusted for delayed responses based on a Bayesian decision theoretic

model.

This chapter is organised as follows. In Section 4.2, we begin by exploring the

impact of fixed and random delays in responses on both the optimal DP response-

adaptive design and the constrained randomised variant (CRDP) introduced in Chap-

ter 3, which we will jointly abbreviate as (CR)DP from hereon for convenience. We

compare it to the delayed randomised play-the-winner rule (DRPWR), described in

Section 2.1.2, which is well-studied in the literature and is the rule most often sug-

gested for delayed response settings (Hardwick et al., 2006).

Similarly to Chick et al. (2017), the remainder of this chapter will focus on the

case where there is a fixed number of patients in the pipeline at each stage and

we will suggest two approaches to account for this delay in Section 4.3, along with

corresponding simulation results. The first is an intuitive approach based on altering

the time horizon used (see Section 4.3.1), and the second extends the MDP model

defined in Chapter 3 by introducing another state variable (see Section 4.3.2). Finally,
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the main conclusions are concisely summarised in Section 4.4.

A fixed number of pipeline patients at each stage will be imposed when the time

between two consecutive allocations (i.e. the time period) is constant and patients

are followed up at a fixed time after treatment (e.g. Facey, 1992; Whitehead, 1993).

Although a patient response may occur at any time, in binary response trials (consid-

ered in this chapter), interest is only in if it has occurred by the specified follow-up

time. Other examples leading to a fixed delay in response are due to administrative

delays, such as staff availability, resource limitations, time taken to obtain the results

(e.g. patients may require a blood test to determine whether the treatment has been

successful, the results of which may only be available one week later), time taken to

update and implement the adaptations, etc. (Pocock, 1983; Wason et al., 2019). In

the literature, other authors (including Langenberg and Srinivasan, 1981, 1982; Chick

et al., 2017) have also formulated delayed response models based upon the assump-

tions of a constant time period and fixed time until response. Furthermore, focusing

on the fixed delay model is a natural first step which will aid in the development of a

solution for more complex delay structures, such as when the number of patients in

the pipeline is instead random (as in Chapter 5).

4.2 The Effect of Delayed Responses on (CR)DP

4.2.1 Trials with a Fixed Delay

In this section, we focus on a deterministic delayed response model which assumes

that there is a constant time between allocations and a fixed delay of length d > 0

between allocating a patient to a treatment and observing their outcome. As a result,

we will know exactly how many patients are in the pipeline at each stage in the trial

which, for t ∈ {d+ 1, . . . , n}, will remain of fixed length equal to d.

In order to explore the impact of delayed responses when applying the (CR)DP
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designs, we use simulation to evaluate its performance in a range of scenarios for

different delay lengths. By first understanding the impact of a delayed response, we

can then take steps to modify the design accordingly. Moreover, as Wason et al. (2019)

point out, “it is important that theoretical work that proposes and promotes adaptive

designs clearly lays out any reduction in their reported efficiency benefits when there is

substantial delay in outcome evaluation”. We pay particular attention to the scenario

in which θA = 0.5 ∀ θB ∈ (0.1, 0.9) and n = 75 so results are consistent with, and

comparable to, those reported in Chapter 3. Since more interest is in what happens

for shorter delays, as this is where the most marked changes in performance of these

designs occur, the results are illustrated for d = 0, 5, 15, 25, 50 and 75. Furthermore,

from a practical viewpoint, “adaptive allocation has no benefit when there are long

delays” (Berry and Stangl, 1996, Chapter 4) because there is little, or no, chance to

adapt the allocation, thus it would be inappropriate to employ an adaptive design

in this setting. The reason for including the results for no delay is so we can clearly

evaluate how the delayed responses are affecting the performance measures relative to

the base case. Further, recall that d = 75 corresponds to fixed, equal randomisation.

The results illustrated in Figure 4.2.1 correspond to changes in the performance of

the CRDP design, and analogous results for the DP design are displayed in Figure

4.5.1 of the Appendix 4.5. We include results for the DP design to show how the

delay affects the design in the absence of the randomisation and constraining.
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Figure 4.2.1: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the CRDP
design when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different fixed delay lengths
(estimated over 100, 000 simulations).

Power. The top left plot in Figure 4.2.1 illustrates the changes in statistical

power for CRDP, with the results for θA = θB corresponding to the type I error rates.

The most notable observation is that the power increases with delay length. This is

what we expect because as the length of the delay increases, the adaptation is slowed

and the closer the design is to pure randomisation meaning there is less imbalance
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between the treatment arms (and hence a greater power). However, the observed

changes in power are only small, even for a considerable increase in the delay length.

For example, when θB = 0.1, the change in power from the “worst” case (i.e. when

d = 0) to the “best” case (i.e. when d = 75) is approximately 10%, on average.

As mentioned previously, we see that the larger changes in power happen for

shorter delays, with negligible changes as the delay length increases from 50 to 75,

for example. The obvious patterns, such as the power increasing with the size of the

treatment difference, are evident for all delay lengths. In terms of the type I error

rates, we see that they are seemingly well controlled since they lie close to the nominal

significance level at 0.1.

Patient benefit. The top right plot in Figure 4.2.1 illustrates the changes in the

percentage of patients allocated to the superior treatment, i.e. the patient benefit,

for CRDP. When θA = θB, the design allocates approximately 50% of patients to the

superior treatment whatever the delay length, as expected. In general, we observe

that the number of patients in the trial receiving the superior treatment decreases as

the delay length increases. Again, this is not surprising since a longer delay means

that there are fewer responses available to update the allocation probabilities, and

the longer the equal randomisation phase at the start of the trial. This also confirms

what has been noted in the literature; for example, in a Technical Report on two-

armed bandit strategies by Berry (1976, Section 6), it was mentioned that “there is a

decrease in the maximal expected proportion of success when there is response delay”.

Consider the scenario in which θA = 0.5 and θB = 0.1. For the case of no delay,

approximately 83% of patients in the trial are allocated to the superior treatment and

for a delay of length 25, approximately 73% of patients are allocated to the superior

treatment. Thus, we only lose roughly 10% of the patient benefit in this case (which

is not a huge price to pay for a delay which causes one third of the information to be

excluded). Furthermore, compared to standard randomisation (illustrated by the pink
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line in Figure 4.2.1), the gain in patient benefit is still considerably higher. Even for a

delay length of 50 (two thirds of the trial size), there are still worthwhile gains, relative

to equal randomisation, with approximately 10% more patients being allocated to the

superior treatment.

Bias. The bottom left plot of Figure 4.2.1 shows the changes in the average bias

of the treatment effect estimator ∆̂ = θ̂A− θ̂B (where θ̂A = sA,n/NA and θ̂B = sB,n/NB

are the observed proportions of successes on treatment A and B, respectively, by the

end of the trial). We observe that, in general, the bias decreases as the delay length

increases (with some slight discrepancy for delay lengths of 0 and 5). This pattern

can be seen more clearly in the corresponding plot for the DP design (Figure 4.5.1 of

the Appendix 4.5). The decrease in bias seems sensible since the values of sA,n, sB,n,

NA and NB will be varying with delay length. As an example, consider the scenario

in which θA = 0.5 and θB = 0.1. For shorter delays, there will be fewer patients

allocated to the inferior treatment (arm B) so that NB < NA. As a result, θ̂B will

be underestimated, which is shown in Chapter 3, so the treatment effect estimator,

∆̂, will be larger, leading to a larger bias. Alternatively, as d → 75, then NB → NA

until eventually NB ≈ NA when d = 75, i.e. as the delay increases, there will be less

imbalance between the two treatment arms. Therefore, θ̂A and θ̂B will be closer to

their true values, hence giving rise to a smaller bias. Note that it will be useful to

look at the values of the raw estimates of θA and θB in Table 4.2.1 to support this.

It is also worth noting that the bias values for a delay of 50 are very close to those

for equal randomisation, i.e. they are lying close to zero across all scenarios.



CHAPTER 4. EXTENSION TO DELAYED RESPONSES 89

True CRDP with delay 5 DRPWR with delay 5

θA θB θ̂A θ̂B θ̂A − θ̂B Bias θ̂A θ̂B θ̂A − θ̂B Bias

0.500 0.100 0.499853 0.096223 0.403630 0.003630 0.496576 0.097737 0.398840 -0.001160

0.500 0.200 0.497806 0.188783 0.309024 0.009024 0.496257 0.196250 0.300007 0.000007

0.500 0.300 0.491774 0.278339 0.213435 0.013435 0.495755 0.295181 0.200574 0.000574

0.500 0.400 0.480684 0.369758 0.110926 0.010926 0.495331 0.394947 0.100384 0.000384

0.500 0.500 0.470749 0.470066 0.000684 0.000684 0.494164 0.494433 -0.000269 -0.000269

0.500 0.600 0.469279 0.579858 -0.110578 -0.010578 0.492965 0.594547 -0.101582 -0.001582

0.500 0.700 0.477296 0.691518 -0.214222 -0.014222 0.490896 0.695328 -0.204432 -0.004432

0.500 0.800 0.487732 0.797777 -0.310045 -0.010045 0.487573 0.796879 -0.309306 -0.009306

0.500 0.900 0.495412 0.899759 -0.404347 -0.004347 0.480832 0.898330 -0.417498 -0.017498

True CRDP with delay 25 DRPWR with delay 25

θA θB θ̂A θ̂B θ̂A − θ̂B Bias θ̂A θ̂B θ̂A − θ̂B Bias

0.500 0.100 0.499554 0.097617 0.401938 0.001938 0.497334 0.097964 0.399370 -0.000630

0.500 0.200 0.497649 0.193748 0.303900 0.003900 0.497083 0.196814 0.300270 0.000270

0.500 0.300 0.493642 0.288373 0.205269 0.005269 0.496828 0.296256 0.200572 0.000572

0.500 0.400 0.488466 0.384723 0.103742 0.003742 0.496502 0.396201 0.100300 0.000300

0.500 0.500 0.484371 0.484043 0.000329 0.000329 0.496184 0.496505 -0.000321 -0.000321

0.500 0.600 0.483978 0.588435 -0.104456 -0.004456 0.495625 0.596536 -0.100910 -0.000910

0.500 0.700 0.487662 0.693864 -0.206202 -0.006202 0.494818 0.697139 -0.202321 -0.002321

0.500 0.800 0.492379 0.797834 -0.305455 -0.005455 0.494015 0.798157 -0.304142 -0.004142

0.500 0.900 0.496040 0.899640 -0.403599 -0.003599 0.492782 0.898929 -0.406147 -0.006147

Table 4.2.1: The success probability estimates, θ̂A and θ̂B, for treatments A and B,
respectively, compared to their true values, θA and θB, following CRDP and DRPWR
with a fixed delay. These results correspond to the scenarios in which n = 75, θA = 0.5
and θB ∈ (0.1, 0.9) for a fixed delay of 5 (upper table) and 25 (lower table).

Mean squared error. The bottom right plot in Figure 4.2.1 shows that the mean

squared error (MSE) of the treatment effect estimator decreases as the delay length

increases across all scenarios. Since the MSE depends on the bias, this pattern could

simply be due to the bias values decreasing with delay, but after plotting only the

variances of the treatment effect estimator (not included here), which follow exactly

the same pattern as the MSE plots, this confirms that the variability of the estimator

does indeed decrease with delay.

A further interesting observation is that for longer delays, the MSE (and vari-

ance) plots become more symmetric around θB = 0.5, yet for shorter delays, the

MSE/variance of the estimator begins to slightly increase again after θB = 0.8 (see
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delay lengths of 0, 5 and 15, for example, on the MSE plot in Figure 4.2.1).

Similar patterns of results are observed for the DP design in Figure 4.5.1 of the

Appendix 4.5, but the changes with delay length are much more pronounced due to

the lack of randomisation and constraining in the design meaning a greater level of

imbalance can occur. Consider the first scenario in which θB = 0.1. When the delay is

25 (one third of the trial size), there is a loss of approximately 15% in patient benefit

relative to the optimal value attained in the no delay case. However, the percentage

of patients on the superior treatment is still approximately 30% larger than equal

randomisation. In terms of the power, a delay of 25 increases it by nearly as much

as 80% relative to when there is no delay. Moreover, it lies very close to the power

obtained by equal randomisation. For a delay of 15, the percentage of patients on

the superior treatment is reduced by only around 8%, but the power is increased by

approximately 66%. Therefore, by introducing a delay in response, although the DP

design is no longer optimal with respect to patient benefit, it still allocates a con-

siderably large percentage of patients to the superior treatment whilst achieving a

substantially improved power.

Note that the scale of the bias and MSE plots for the DP is much larger than that

used for the corresponding plots for the CRDP.

Comparison to DRPWR

In this section, we explore how the most commonly proposed rule for such problems,

the DRPWR (see Section 2.1.2), compares to the (CR)DP designs for a range of

delay lengths. We focus on two scenarios, with and without a treatment difference,

to illustrate the differences between the performance measures of these designs. Note

that plots corresponding to Figure 4.2.1 for just the DRPWR are provided in Figure

4.5.3 of the Appendix 4.5.
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(i) Scenario 1: θA = 0.5 and θB = 0.1

Power. The first plot in Figure 4.2.2 illustrates the changes in power as the delay

length, d, increases. We have already identified that the power of the (CR)DP design

increases with delay, however this plot gives a much clearer visualisation of the rate

of this increase. In particular, we see that it increases hyperbolically with the largest

changes occurring for shorter delay lengths and practically no change occurring as d

increases from 40 to 75.

In contrast, the length of the delay does not seem to affect the power of the

DRPWR, which remains fairly constant for all delay lengths. The power of the RPWR

is already high when there is no delay, because it does not create enough imbalance

between the two treatments, and thus there is little room for improvement.

Comparing designs for this particular case, we see that although the DRPWR

attains the highest power for delays up to around 45 (at which point all of the designs

converge), the CRDP design still performs very well, whereas the power of the DP

design is insufficient and lies below 80% for delays up to length 15. For example,

when the delay is 5, the power of DRPWR and CRDP is above 90% but for DP, it is

close to 50%.

Patient benefit. The second plot in Figure 4.2.2 shows how the percentage of

patients allocated to the superior treatment varies as d increases. Similarly to the

(CR)DP, as the delay length increases, the DRPWR allocates fewer patients to the

superior arm. Again, this plot allows us to visualise the rate of this decrease much

more clearly. For DP, we observe that the percentage of patients allocated to the

superior treatment decreases linearly at a relatively constant rate compared to the

CRDP which decreases at a slower rate, and the DRPWR which decreases at a much

slower rate than both (CR)DP designs. Further, (CR)DP allocates substantially more

patients to the superior treatment than the DRPWR, most markedly for shorter delay

lengths. For example, Figure 4.2.2 shows that when d = 5, DP and CRDP allocate
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approximately 30% and 20% more patients, respectively, to the superior arm than

DRPWR.

Bias. The third plot in Figure 4.2.2 illustrates the changes in the average bias of

the treatment effect estimator as the delay length varies. We have already identified

that, generally, the bias of the (CR)DP design decreases with delay, and this plot

shows that this happens for shorter delays up to around d = 30, after which point the

bias fluctuates very closely around 0. Moreover, the bias values decrease at a much

quicker rate for the DP design. In contrast, the bias values following the DRPWR

appear to be fairly robust to changes in delay, remaining close to 0 for all delay lengths,

with a very slight decrease evident as d increases.

Note that the scale of this plot is very small and although the DRPWR appears to

perform slightly better with respect to bias for shorter delay lengths, the differences

are only negligible (to three or four decimal places).
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Figure 4.2.2: The changes in power, % of patients on the superior treatment and the
average bias of the treatment effect estimator for (CR)DP and DRPWR as the length
of the fixed delay increases, when n = 75, θA = 0.5 and θB = 0.1 (estimated over
100, 000 simulations).

(ii) Scenario 2: θA = θB = 0.5

Corresponding plots when there is no treatment difference are shown in Figure

4.2.3. Here, we notice that the differences in the performance measures of the (CR)DP

and DRPWR are much less pronounced, as expected.

The first plot illustrates the changes in type I error rates for the (CR)DP and
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DRPWR as the delay increases. We observe that the overall trend of the type I error

rate appears to decrease with d for all designs, although more so for the (CR)DP design

than the DRPWR. Further, the type I error rates for the DRPWR are consistently

smaller, albeit very slightly, than those for (CR)DP (with delay) until around d = 60,

after which they perform similarly.

Since the treatments have the same success rates, the percentage of patients al-

located to either treatment behaves accordingly, that is, close to 50% irrespective of

the design or delay length. Similarly, the bias values lie very close to 0 for all delay

lengths regardless of the design since there is no imbalance between the two treatment

arms.
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Figure 4.2.3: The changes in type I error, % of patients on the superior treatment
and the average bias of the treatment effect estimator for (CR)DP and DRPWR as
the length of the fixed delay increases, when n = 75, θA = θB = 0.5 (estimated over
100, 000 simulations).

4.2.2 Trials with a Random Delay

The assumption of a fixed delay in Section 4.2.1 is not very realistic in a clinical trial

context where the length of the delay may vary from patient to patient. Thus, in this

section, we relax the assumption of a fixed delay, and consider a simple stochastic

delayed response model in which patients still arrive sequentially, at a constant rate,
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but the length of time to observe a response is now random2. As a result, in contrast

to Section 4.2.1, the number of patients in the pipeline at any stage of the trial is also

random.

We use a Bernoulli random variable with probability r to determine which patients

in the pipeline have responded at each stage in the trial. If a patient has responded,

we record their observation, update the states accordingly and remove this patient

from the pipeline. Otherwise, if the patient has not yet responded, they remain in the

pipeline and we simply proceed to allocate the subsequent patient based on whatever

information is currently available.

Recall that a geometric distribution models the number of independent and identi-

cally distributed Bernoulli trials before the first success. Therefore, using a Bernoulli

random variable at each stage to determine whether there has been a patient response

is equivalent to assuming a geometric response time. If Yi denotes the response time,

or equivalently the delay length, of patient i = 1, . . . , n, then Yi ∼ Geometric(r), with

probability mass function given by (1 − r)tr for t = 0, 1, . . . and 0 < r ≤ 1. Note

that Eick (1988b) also considered a geometric response time when investigating the

one-armed bandit problem with delay.

We will now vary the success probability r, i.e. the probability of a patient respond-

ing at each stage, in order to explore the impact of random delays on the (CR)DP

designs. So that the results are presented similarly to those in Section 4.2.1 for the

fixed delay case, we will illustrate the performance measures for different expected

delay lengths. Since the expected value of a geometric random variable Yi is given

by E(Yi) = (1 − r)/r, to do this, we will choose values of r = 1/(1 + E(Yi)) such

that E(Yi) = 0, 5, 15, 25, 50, 75 and 100 for each i. Note that we include an expected

2Although it is not typical in clinical trial practice to have a binary endpoint that is randomly
observed, we use it purely for the purpose of illustrating the effect of random delays on (CR)DP
since it is more intuitive to interpret a random delay as being the random time from allocation to
response. This set-up is also used in Hardwick et al. (2006). However, the equivalent — but more
realistic — reformulation in terms of random arrivals with a fixed follow-up time is considered in
Chapter 5.
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delay length of 100 here to demonstrate that, in the random delay case, the (CR)DP

gives rise to different performance measures for expected delays greater than the trial

size, i.e. 75. This is in contrast to the fixed delay case in which, for all delays ≥ 75,

(CR)DP mimics equal randomisation and thus behaves the same.

Figure 4.2.4 is the analogue of Figure 4.2.1 but for the random delay case. The

overall trends observed for the performance measures as the expected delay lengths

increase are similar to those for the fixed delay case. However, we see that there

are some immediate differences as a result of the additional variability incurred by

the random delay. In particular, the top right plot of Figure 4.2.4 shows that the

percentage of patients allocated to the superior treatment appears to be much larger

for the random delay case (explained below). The bias and MSE values are also larger

when the delay is random, and there is little difference in the power as the expected

delay length increases. These observations are due to a mixture of reporting averages

and the fact that there is inherent variability in the results that goes beyond that of

simulation error, owing to the underlying random nature of the delay.

The corresponding plot illustrating the effect of a random delay on the performance

of the DP design is shown in Figure 4.5.2 of the Appendix 4.5.
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Figure 4.2.4: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the CRDP
design when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different expected random delay
lengths (estimated over 100, 000 simulations).

Comparison to Fixed Delay

We now compare the performance measures of the (CR)DP with a fixed delay versus

(CR)DP with a random delay for a specific scenario in which θA = 0.5 and θB = 0.1

(see Figure 4.2.5). Note that this comparison is fair in the sense that we have cali-
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brated the random delays so that we expect them to be the same length, on average,

as the fixed delays. However, it is not fair in the fact that one has variability whilst

the other does not. Thus, we use this comparison purely for illustrative purposes to

highlight the differences that can occur as a result of the delay being random rather

than fixed. Figure 4.2.5 shows that there is a smaller power, more patients on the

superior treatment and a larger bias observed due to the additional uncertainty in

the random delay. Furthermore, it is interesting to note that although we expect the

percentage of patients on the superior treatment (% on sup) to be 50% when the

expected delay length is 75, as it is for the fixed delay of 75, it is actually closer to

70% for the CRDP and 79% for the DP (see the middle plot in Figure 4.2.5).

The reason for this is that we will have some simulation runs where there is no

delay, by random chance, in which case we are back to the standard (CR)DP design

and will have high values for % on sup, and other runs where there is complete delay,

in which case we are at the other extreme of pure randomisation and will consequently

have values close to 50% on sup (and everything in between as well). Therefore, the

estimates for the % on sup will lie somewhere in between. Similarly for the bias,

which we expect to be 0 when the expected delay length is 75, but it is actually

higher. Moreover, recall that the variance of a geometric random variable is given by

(1 − r)/r2. This means that the variability increases as r decreases or, equivalently,

as the expected delay length increases. Thus, the large amount of variability ob-

served, particularly for longer expected delay lengths, is what we would expect from

a geometric random variable.
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Figure 4.2.5: The changes in power, % of patients on the superior treatment and
the average bias of the treatment effect estimator for the CRDP design as the
fixed/expected delay length increases, when n = 75, θA = 0.5 and θB = 0.1 (esti-
mated over 100, 000 simulations).

To confirm our justification that these differences are indeed due to the increased

variability prevalent in the random delay, we consider the actual distributions of the

simulations (in the form of histograms) rather than simply summarising the results

as means which we have been doing thus far. Since there is a very large difference

between the % on sup obtained for the fixed and random delays when the delay is 75,

we will illustrate the corresponding histograms for this case in Figure 4.2.6.

% patients on superior treatment

20 40 60 80 100

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0

(a) CRDP with fixed delay

% patients on superior treatment

20 40 60 80 100

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

(b) CRDP with random delay

Figure 4.2.6: Histograms showing the distribution of the 100, 000 simulations for the
% of patients on the superior treatment when the fixed/expected delay length is 75,
n = 75, θA = 0.5 and θB = 0.1.
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From Figure 4.2.6a, which corresponds to a fixed delay, we see that the distribution

looks approximately normal with most of the 100, 000 simulations centred around

50%, as expected. However, from Figure 4.2.6b, we see that the distribution covers

a much wider range of values (with some of the simulations producing values below

20% and above 90%). Further, it is skewed to the right with most of the simulations

concentrated around 70%. This clearly illustrates the increased variability in the

results when there is a random delay and thus justifies the differences observed in the

performance measures.

Comparison to DRPWR

We now compare the performance of the (CR)DP in trials with a random delay to the

DRPWR, as we did in Section 4.2.1 for trials with fixed delays. Similarly, we consider

how the performance measures vary with the expected delay length for (i) a treatment

difference and (ii) no treatment difference. For an alternative illustration of how the

DRPWR (with random delay) behaves for a wider range of scenarios under different

expected delay lengths, see Figure 4.5.4 in Appendix 4.5.

(i) Scenario 1: θA = 0.5 and θB = 0.1

Power. The first plot in Figure 4.2.7 shows the changes in power for the (CR)DP

and DRPWR as the expected delay length increases. As in the fixed delay case, the

greatest changes in power for the (CR)DP designs occur for shorter expected delay

lengths, although now at a slower rate. For CRDP, the power remains constant for

delays expected to be greater than 65, but for DP it continues increasing for all of

the expected delay lengths plotted. The power of the DRPWR, on the other hand,

remains relatively stable for all expected delay lengths and attains values very close

to those obtained when there is a fixed delay.

Relative to the DRPWR, the (CR)DP designs have smaller power for all expected

delay lengths. Again, this difference is much more prominent for DP. For example,
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when the delay length is expected to be 5, the power is 8% smaller for CRDP and 53%

smaller for DP compared to the DRPWR. For expected delays over 40, the difference

in power between the DRPWR and CRDP is expected to be at most 3%.

Patient benefit. The second plot in Figure 4.2.7 compares how the percentage

of patients allocated to the superior treatment varies as the expected delay length

increases for the (CR)DP and DRPWR. Again, we see that the % on sup for the

(CR)DP decreases at a slower rate than when the delay is fixed, but at a faster rate

than the DRPWR which only decreases by a small amount (2.7%) as the expected

delay increases from 0 to 100. Moreover, the rate of change for these designs remains

relatively constant. Compared to the DRPWR, the (CR)DP allocates significantly

more patients to the superior treatment for all expected delay lengths considered. In

particular, for an expected delay length of 5, DP and CRDP allocate approximately

30% and 20% more patients, respectively, to the superior arm than the DRPWR,

which is a huge improvement and is the same as what we observed in the fixed delay

case.

Bias. The third plot in Figure 4.2.7 illustrates the changes in the average bias

of the treatment effect estimator as the expected delay length varies. Overall, for

the CRDP design, the trend in bias appears to be decreasing, which is much more

apparent for the DP. The bias values corresponding to the DRPWR do not change

much with the expected delay and lie slightly closer to 0 than the CRDP for all

expected delay lengths. However, it must be remembered that the scale of this plot is

very small so the differences in the bias between the DRPWR and CRDP are trivial.

Both the DRPWR and CRDP consistently outperform the DP, but the differences

are considerably greater for shorter expected delays. For example, when the expected

delay length is 5, the bias of the DP is ten times larger than that of the CRDP.
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Figure 4.2.7: The changes in power, % of patients on the superior treatment and the
average bias of the treatment effect estimator for the (CR)DP and DRPWR as the
expected delay length increases, when n = 75, θA = 0.5 and θB = 0.1 (estimated over
100, 000 simulations).

(ii) Scenario 2: θA = θB = 0.5

The corresponding plots for no treatment difference are shown in Figure 4.2.8.

The first plot illustrates the changes in type I error rates for the (CR)DP and

DRPWR as the expected delay increases. After an initial increase for (CR)DP, the

type I error rate then seems to decrease slightly (at a slower rate than it did in the fixed

delay case). The type I error for the DRPWR seems to remain relatively constant

around 0.077.

The % on sup and bias values, illustrated in the second and third plots of Fig-

ure 4.2.8, behave as one would expect, that is, randomly jumping near 50% and 0,

respectively.

4.2.3 Discussion

In the first part of this chapter, we have evaluated how the (CR)DP design performs

in two-armed trials with both fixed and random delays. This is an important ques-

tion in practice which has been raised several times whenever presenting the CRDP

design. To summarise, we have found that we gain slightly in terms of power and bias

through the delay, so in that sense delay could be viewed as a positive attribute (which
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Figure 4.2.8: The changes in type I error, % of patients on the superior treatment
and the average bias of the treatment effect estimator for the (CR)DP and DRPWR
as the expected delay length increases, when n = 75 and θA = θB = 0.5 (estimated
over 100, 000 simulations).

seems somewhat counter-intuitive), but we lose in terms of patient benefit which is

the main advantage of using such response-adaptive designs over alternatives. How-

ever, this loss is not overly concerning and for a relatively large delay length of 25,

for example, which is one third of the sample size, the percentage of patients on the

superior treatment when θA = 0.5 and θB = 0.1 is still approximately 23% higher

for CRDP than the traditional approach of fixed randomisation. Further, when com-

pared to the performance of the most commonly proposed rule for delayed response

scenarios (Hardwick et al., 2006), namely the DRPWR, there are still considerable

improvements with respect to the patient benefit for (CR)DP.

Therefore, this evaluation has shown that the (CR)DP designs already perform

well in trials with delayed responses since they continue to maintain their patient ben-

efit advantages over other designs for a range of (expected) delay lengths. Simulation

studies for other RAR designs in the literature, mostly urn models, have similarly

shown that they still reduce the expected number of failures and allocate more pa-

tients to the better treatment(s) when responses are delayed (Rosenberger and Lachin,

2016, Chapter 12). More specifically, for short to moderate delays, (CR)DP incurs

only a slight loss in patient benefit (relative to the no delay case) which again reflects

what has been found in the literature for other response-adaptive designs (see the pa-
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pers cited in Section 4.1 for examples). Thus, the main message to convey from this

simulation study is that (CR)DP is fairly robust to delays, whether fixed or random,

with only a small loss in patient benefit for moderate delay lengths.

4.3 Adjusting (CR)DP for Fixed Delays

As we have seen above, (CR)DP already performs quite well in the presence of de-

layed responses with slight gains in power and a loss in patient benefit as the delay

length increases. As such, there is not much room for improvement. However, since

the patient benefit is the primary motivation behind using such bandit-based designs

(see e.g. Rosenberger and Lachin, 1993; Hardwick, 1995), ideally we want to retain

this feature as much as possible. Therefore, the second part of this chapter investi-

gates whether we can minimise this loss by utilising the pipeline information in the

adaptations rather than simply ignoring it as we were doing above and as most adap-

tive designs in the literature do. For the remainder of this chapter, we focus on the

setting of a constant arrival rate and a fixed response/follow-up time.

4.3.1 Modifying the Time Horizon of (CR)DP

In Section 4.2, the time horizon used in the MDP formulation of the (CR)DP design

was of size T = n, i.e. equivalent to the number of patients in the trial. However, when

we implement this design with a fixed delay of length d, the state representing the

number of unobserved patients remaining in the trial will stay the same for the first d

patients because no observations accrue during this stage. Therefore, these patients

are simply randomised (with equal probability) between the treatments, giving rise to

an initial equal randomisation phase. It is only once we begin to receive observations,

i.e. from time d+1 onwards, that (CR)DP allocates patients adaptively. This suggests

that for a trial of size n, it may only be worthwhile to use the (CR)DP algorithm to
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allocate patients d+ 1 to n, that is, for n− d of the allocation decisions.

Therefore, we first investigate how the (CR)DP algorithm performs when it is

implemented with the adjusted time horizon of T = n− d. Not only does this mean

that we generate a smaller array of optimal actions, which is computationally quicker

and requires less memory, but this will allow us to understand whether there are any

non-negligible gains when optimising over the smallest possible time horizon instead.

Figure 4.3.1 illustrates the performance measures of CRDP across all scenarios

when using a time horizon (TH) of n − d for a range of delay lengths, which we

refer to as the CRDP-TH design (represented by the dashed lines). For comparative

purposes, the CRDP when using a time horizon of n is also superimposed onto these

plots. In terms of the power (top left plot in Figure 4.3.1), we see that there is very

little difference between the two designs, with CRDP-TH lying slightly above CRDP

for shorter delay lengths. For the percentage of patients on the superior arm (top right

plot in Figure 4.3.1), the differences are more pronounced and, interestingly, CRDP is

found to outperform CRDP-TH for all delay lengths (excluding 0 and 75 where both

designs are equivalent). A possible reason for this is discussed below. Further, since

CRDP-TH results in less imbalance between the two treatment groups than CRDP,

the corresponding bias and MSE values are also slightly smaller for CRDP-TH, as

illustrated in the bottom two plots of Figure 4.3.1.
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Figure 4.3.1: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the CRDP
and CRDP-TH designs when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different delay
lengths (estimated over 1, 000, 000 simulations).

We now discuss why CRDP is shown to attain a larger percentage of patients on

the superior arm compared to CRDP-TH with the aid of allocation plots in Figures

4.3.2 and 4.3.4. Recall that in Figure 3.4.6 of Chapter 3, we saw that, for the no delay

case, the average allocation probability to the superior treatment oscillates markedly

for the final 15 patients in order to satisfy the constraint, and thus the CRDP makes



CHAPTER 4. EXTENSION TO DELAYED RESPONSES 106

an important number of allocations to the inferior arm towards the end of the trial.

However, when the CRDP time horizon T is equal to the trial size n and there is a

delay of length d, the final d decisions are redundant. Thus, this final exploration

phase, which is illustrated by the dashed green lines in Figures 4.3.2a and 4.3.2b,

is ignored. Nevertheless, CRDP will continue to allocate the required number of

patients, as specified by the constraint, to the inferior arm. In fact, on average, it will

“over-satisfy” the constraint because the number of allocations made to the inferior

arm during the initial equal randomisation stage (as a result of the delay) will, on

average, exceed those that are no longer being made at the end. This is evident from

Figures 4.3.2a and 4.3.2b where it is clear that the proportion of times the superior

(inferior) treatment is allocated during the “redundant” phase in green is substantially

greater (smaller) than that during the equal randomisation phase.

In contrast, by using the smallest possible time horizon of n − d instead, there

will be even more allocations, on average, to the inferior arm because the exploration

phase towards the end of the trial is still incorporated (as in the no delay case) (see

the red lines in Figures 4.3.2a and 4.3.2b). Hence, we see a smaller percentage of

patients on the superior treatment, and thus higher power, for CRDP-TH compared

to CRDP with the longer time horizon of 75.

Note that the patient allocation plots in Figure 4.3.2 also illustrate the effect of

changing the delay length d on the average allocation probabilities when using CRDP

and CRDP-TH. For example, the black line in Figure 4.3.2a shows the average alloca-

tion probability to the superior treatment under the CRDP design with time horizon

equal to the trial size T = 75, a fixed delay of d = 5 and a degree of constraining equal

to 15% of the total sample size (approximately 12 patients on each arm). We see that

near the end of the trial, by around patient number 60, the proportion of times the

superior treatment is allocated decreases in order to satisfy the constraint. However,

when the delay length is increased to d = 15, Figure 4.3.2b shows that there is no
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Figure 4.3.2: Probability of allocating a patient to the superior treatment when θA =
0.5 and θB = 0.9 in a trial of size n = 75 (estimated over 1, 000, 000 simulations).
The black and red lines correspond to the CRDP design with time horizons T = n
and T = n− d, respectively. The dashed green lines illustrate what the remaining d
allocations would look like if the CRDP was continued.

longer this decrease near the end of the trial because, in this case, it is likely that

the minimum requirement on each arm will have already been fulfilled (owing to the

longer delay length, and consequently the longer initial equal randomisation phase).

The plots for CRDP-TH (in red) similarly show that as the delay length increases,

the need to allocate as many patients to the inferior treatment at the end of the trial

is reduced.

Since we expect CRDP-TH to make a greater number of allocations to the inferior

arm than CRDP, it is not clear whether the observed differences in Figure 4.3.1 are

due to the change in time horizon, or the fact that CRDP-TH is effectively satisfying

a stricter constraint. Therefore, to isolate the impact of the time horizon alone on

the performance of the design, we remove the constraint and randomisation from the

design, and revert back to the original DP design. The corresponding performance

measures illustrated in Figure 4.3.3 and allocation plots in Figure 4.3.4 show that DP
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and DP-TH behave the same, and thus there are no non-negligible gains to be made

from modifying the time horizon.

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θB

P
ow

er

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
Delay length

0
5
15
25
50
75

●

●

DP
DP−TH

0.2 0.4 0.6 0.8

50
60

70
80

90
10

0

θB
%

 o
f p

at
ie

nt
s 

on
 s

up
er

io
r 

tr
ea

tm
en

t

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

Delay length

0
5
15
25
50
75

●

●

DP
DP−TH

0.2 0.4 0.6 0.8

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

θB

B
ia

s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●
● ● ●

●

●
● ●

●

●
● ● ●

●

●
● ●

●
● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ●

Delay length

0
5
15
25
50
75

●

●

DP
DP−TH

0.2 0.4 0.6 0.8

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

θB

M
S

E

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●
● ●

● ●
●

●

●
●

●
● ●

● ● ●

●

●
●

● ● ●
● ● ●

●
●

● ● ● ● ● ● ●
●

●
● ● ● ● ● ● ●

●
●

● ● ● ● ●
●

●●
●

● ● ● ● ●
●

●

Delay length

0
5
15
25
50
75

●

●

DP
DP−TH

Figure 4.3.3: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the DP
and DP-TH designs when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different delay
lengths (estimated over 1, 000, 000 simulations).

Next, we propose a more sophisticated way of accounting for fixed delays by in-

corporating data on the pipeline patients into the MDP model associated with the

(CR)DP design.



CHAPTER 4. EXTENSION TO DELAYED RESPONSES 109

●●●●●●

●

●

●

●

●

●

●
●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Patient number

P
ro

po
rt

io
n 

of
 ti

m
es

 s
up

er
io

r 
tr

ea
tm

en
t i

s 
al

lo
ca

te
d

0 10 20 30 40 50 60 70

●

DP−75
DP−70

(a) d = 5

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Patient number

P
ro

po
rt

io
n 

of
 ti

m
es

 s
up

er
io

r 
tr

ea
tm

en
t i

s 
al

lo
ca

te
d

0 10 20 30 40 50 60 70

●

DP−75
DP−60

(b) d = 15

Figure 4.3.4: Probability of allocating a patient to the superior treatment when θA =
0.5 and θB = 0.9 in a trial of size n = 75 (estimated over 1, 000, 000 simulations).
The black and red lines correspond to the DP design with time horizons T = n and
T = n− d, respectively.

4.3.2 Incorporating the Pipeline Information into (CR)DP

Model Formulation

Following Chapter 3, we consider a clinical trial where the patients arrive sequen-

tially, one-by-one, and are allocated to either treatment A or B. We model the

patient responses as independent Bernoulli random variables giving rise to binary

outcomes, either a success or failure. In contrast with the model presented in Chap-

ter 3, however, patient responses are now observed only after a fixed delay of length

d ∈ Z≥0 (where d = 0 recovers the immediate response case). As before, we assign

non-informative uniform prior distributions to θA and θB, the unknown success prob-

abilities of treatments A and B respectively. Since this is a conjugate prior for the

Bernoulli likelihood, the resulting posterior distribution follows a Beta distribution

with parameters summarising the initial prior information plus the observed infor-

mation to date. Note that for simplicity of exposition, we specify the model for the
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two-arm case, yet the principles used can easily be generalised to multi-arm trials.

Similar to the approach taken in Chick et al. (2017), it is useful to think about

this problem as being composed of the following three stages. It may also be helpful

to refer to the diagram in Figure 5.2.1 of Chapter 5 for the general case.

Stage 1: allocations. This corresponds to the initial equal randomisation stage

of the trial in which the first d patients are randomly allocated, with equal probability,

to either treatment A or B. No responses are observed during this stage due to the

delay of length d, and so these patients enter the pipeline to form, what Eick (1988b)

referred to as, an information bank.

Stage 2: allocations and observations. During this stage, (i) patients continue

to be randomised to a treatment arm and added to the pipeline, and (ii) responses

from the pipeline patients are observed and used to update the states. The pipeline

remains of fixed length d throughout this stage.

Stage 3: observations. This comprises the end of the trial after all n patients

have been allocated. However, updating continues to take place as the remaining

pipeline responses are observed.

As in Chapter 3, we formulate the problem as an MDP defined in discrete time

in which each time period is indexed by t ∈ {0, 1, . . . , n}, representing both time

and the number of patients that have been treated (since at time t, we have treated

t patients). Recall that a time period refers to the time between two allocation

decisions, which will be of a fixed length throughout the trial since we are assuming

that the recruitment rate is constant. The elements of the MDP corresponding to the

fixed delay version of the CRDP model, which we will henceforth refer to as FCRDP

for convenience, are now defined.

The state space, zt, which summarises all of the information available at time

t when the current patient is about to be allocated (Eick, 1988b), now includes an

additional parameter, uA,t, representing the number of pipeline patients on treatment
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A, that is, those patients that have been allocated to treatment A but have not yet

responded. This additional parameter increases the dimension, and therefore the

complexity, of the problem. Although we do not need to explicitly include another

parameter in the state space for the number of pipeline patients on treatment B, since

it is derived from information we already know (uB,t = d − uA,t), we include it here

for completeness.

The remaining states, as before, include the number of patients in the trial remain-

ing to be treated, ñ = n − t, and the number of successes and failures observed on

each treatment to date (plus the prior information), denoted by s̃A,t, f̃A,t, s̃B,t, f̃B,t.

Note that we can exclude one of s̃A,t, f̃A,t, s̃B,t or f̃B,t from the state space because

sA,t + fA,t + sB,t + fB,t + d = t but, again, we include it here for clarity of exposition.

Thus, the vector of states can be summarised as

zt = (uA,t, uB,t, s̃A,t, f̃A,t, s̃B,t, f̃B,t, ñ).

At each t ∈ {0, 1, . . . , T}, where T = n is the time horizon (equivalent to the total

number of patients within the trial), an action at is chosen from the randomised set

of actions, A = {1, 2}, such that at = 1 denotes allocating the next patient (patient

t + 1) to treatment A with probability p and treatment B with probability 1 − p,

and at = 2 denotes allocating patient t + 1 to treatment B with probability p and

treatment A with probability 1− p (where 0.5 ≤ p ≤ 1 for a two-armed trial).

The non-zero transition probabilities, P(zt+1 | zt, at), representing the evolution

of the states from time t to t + 1 under action at, for each of the different stages of

the problem are as follows:
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Stage 1.

(i) When at = 1:

zt+1 =

 (uA,t + 1, uB,t, s̃A,t, f̃A,t, s̃B,t, f̃B,t, ñ− 1) w.p. p,

(uA,t, uB,t + 1, s̃A,t, f̃A,t, s̃B,t, f̃B,t, ñ− 1) w.p. 1− p.

(ii) When at = 2:

zt+1 =

 (uA,t + 1, uB,t, s̃A,t, f̃A,t, s̃B,t, f̃B,t, ñ− 1) w.p. 1− p,

(uA,t, uB,t + 1, s̃A,t, f̃A,t, s̃B,t, f̃B,t, ñ− 1) w.p. p.

Stage 2.

(i) When at = 1:

zt+1 =



(uA,t, uB,t, s̃A,t + 1, f̃A,t, s̃B,t, f̃B,t, ñ− 1) w.p. p · s̃A,t

s̃A,t+f̃A,t
· uA,td ,

(uA,t, uB,t, s̃A,t, f̃A,t + 1, s̃B,t, f̃B,t, ñ− 1) w.p. p · f̃A,t

s̃A,t+f̃A,t
· uA,td ,

(uA,t + 1, uB,t − 1, s̃A,t, f̃A,t, s̃B,t + 1, f̃B,t, ñ− 1) w.p. p · s̃B,t

s̃B,t+f̃B,t
· uB,td ,

(uA,t + 1, uB,t − 1, s̃A,t, f̃A,t, s̃B,t, f̃B,t + 1, ñ− 1) w.p. p · f̃B,t

s̃B,t+f̃B,t
· uB,td ,

(uA,t − 1, uB,t + 1, s̃A,t + 1, f̃A,t, s̃B,t, f̃B,t, ñ− 1) w.p. (1− p) · s̃A,t

s̃A,t+f̃A,t
· uA,td ,

(uA,t − 1, uB,t + 1, s̃A,t, f̃A,t + 1, s̃B,t, f̃B,t, ñ− 1) w.p. (1− p) · f̃A,t

s̃A,t+f̃A,t
· uA,td ,

(uA,t, uB,t, s̃A,t, f̃A,t, s̃B,t + 1, f̃B,t, ñ− 1) w.p. (1− p) · s̃B,t

s̃B,t+f̃B,t
· uB,td ,

(uA,t, uB,t, s̃A,t, f̃A,t, s̃B,t, f̃B,t + 1, ñ− 1) w.p. (1− p) · f̃B,t

s̃B,t+f̃B,t
· uB,td .

Note that uA,t remains the same in the first two transitions because the pa-

tient being allocated and the patient responding are both on treatment A, and

similarly for treatment B in the latter two transitions.

(ii) When at = 2:

As above but with the probabilities p and 1− p exchanged.
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Finally, the expected one-period (or immediate) reward after transitioning from

state zt to zt+1 under action at is given by Rat(zt). Here, the one-period reward

corresponds to the first-in-pipeline patient who was allocated d time-steps ago (at

time t − d), not the patient that was previously allocated (at time t), as in the

CRDP model described in Chapter 3. Note that the reward depends on the objective

function of interest, which in this case is to maximise the expected total number of

patient successes in the trial, whereby we obtain a reward of 1 for a success and 0 for a

failure. Since we do not know which treatment the first-in-pipeline patient received, we

instead assume that they received treatment A with probability
uA,t
d

and treatment B

with probability
uB,t
d

. To keep track of which treatment each pipeline patient received,

rather than just the number of pipeline patients on each treatment, a parameter would

need to be introduced into the state space for every pipeline patient. Consequently,

the problem would quickly become computationally infeasible as d increased.

Stage 1. For t ∈ {0, . . . , d}, no reward accrues since there are no patient responses

observed during this time.

Stage 2. For t ∈ {d+ 1, . . . , n},

(i) When at = 1:

R1(zt) = p ·

{
s̃A,t

s̃A,t + f̃A,t
· uA,t
d

+
s̃B,t

s̃B,t + f̃B,t
· uB,t
d

}
+

(1− p) ·

{
s̃A,t

s̃A,t + f̃A,t
· uA,t
d

+
s̃B,t

s̃B,t + f̃B,t
· uB,t
d

}

=
s̃A,t

s̃A,t + f̃A,t
· uA,t
d

+
s̃B,t

s̃B,t + f̃B,t
· uB,t
d
.
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(ii) When at = 2:

R2(zt) = (1− p) ·

{
s̃A,t

s̃A,t + f̃A,t
· uA,t
d

+
s̃B,t

s̃B,t + f̃B,t
· uB,t
d

}
+

p ·

{
s̃A,t

s̃A,t + f̃A,t
· uA,t
d

+
s̃B,t

s̃B,t + f̃B,t
· uB,t
d

}

=
s̃A,t

s̃A,t + f̃A,t
· uA,t
d

+
s̃B,t

s̃B,t + f̃B,t
· uB,t
d
.

The rewards are equivalent in this case because the response from the first-in-

pipeline patient will be the same regardless of which action is taken for the

subsequent patient.

Stage 3. When ñ = 0,

R(zt) = uA,t ·
s̃A,t

s̃A,t + f̃A,t
+ uB,t ·

s̃B,t

s̃B,t + f̃B,t
+ ε,

where

ε =

 −n, if uA,t + sA,t + fA,t < ` or uB,t + sB,t + fB,t < `,

0, otherwise,

which serves as a penalty to avoid choosing states that give rise to fewer than the

desired number of allocations on each arm, `, and uA,t · s̃A,t

s̃A,t+f̃A,t
+ uB,t · s̃B,t

s̃B,t+f̃B,t
is the

expected predicted number of successes for the pipeline patients.

The Bellman equation, defined in (2.2.2) of Chapter 2, immediately follows as the

expected one-period rewards, defined above, plus the expected (undiscounted) future

rewards. As in Chapter 3, the objective is to maximise the expected total reward over

the entire time horizon. This is solved exactly using backward induction (Sections

2.2.3 and 3.6.1) to obtain the optimal treatment allocation policy of the FCRDP

design. The performance of this design is evaluated in the following section.
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Simulation Results

We implement the proposed FCRDP design, along with the analogous version for the

DP (which we refer to as the FDP), via simulation. For consistency, we illustrate the

performance of F(CR)DP in a two-armed trial with 75 patients and a fixed delay of

length d for the same scenarios that have been considered throughout this chapter.

Results for other sample sizes and delay lengths showed similar patterns and the

conclusions do not change.

First, we focus on how, if at all, the performance measures of FCRDP, indicated

by the dashed lines in Figure 4.3.5, vary relative to CRDP, represented by the solid

lines, for a selection of fixed delay lengths. Analogous results for DP versus FDP are

presented in Figure 4.5.5. The top left plot in Figure 4.3.5 shows that the power of

FCRDP is slightly smaller than that of CRDP, particularly for smaller delay lengths

(see delay lengths of 5 and 10, for example). This is more obvious for the FDP design;

see Figure 4.5.5. An alternative representation is provided in Figure 4.4.1 where the

differences in power between FDP (blue line) and DP (green line) are greater than

the corresponding differences between FCRDP (red line) and CRDP (black line).

The % on sup, displayed in the top right plot of Figure 4.3.5, is larger for FCRDP

than CRDP for all delay lengths > 0, excluding 75 where both designs are equivalent

(see also Figure 4.4.1). For example, when θB = 0.1 and d = 25 (see blue line), an

additional 1% of patients, on average, will receive the superior treatment. The larger

% on sup for the proposed design is also reflected in the corresponding results for

FDP (see Figures 4.4.1 and 4.5.5). Such gains are extremely desirable in practice

(Rosenberger and Hu, 2004), particularly for trials involving life-threatening diseases.

The changes in the bias and MSE values are illustrated in the bottom two plots

of Figure 4.3.5. The bias values following the FCRDP design appear to be slightly

deflated relative to those for CRDP, at least for the smaller delay lengths, whereas

the MSE values are slightly inflated. Since the scale of this plot is extremely small,
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these observed differences are negligible.
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Figure 4.3.5: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the CRDP
and FCRDP designs when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different fixed
delay lengths (estimated over 1, 000, 000 simulations).

Effect of Random Delays on F(CR)DP

Next, in the same way as we did for (CR)DP in Section 4.2.2, we investigate how

the F(CR)DP design performs when the delays in response are instead random. The
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results are presented in Figure 4.3.6 (see dashed lines), alongside those for CRDP

(solid lines), and illustrated for the case of geometric response times with expected

delay lengths as indicated.

We observe that, relative to CRDP, FCRDP continues to consistently improve the

percentage of patients allocated to the superior arm, even when the delay is random.

For example, in a trial where n = 75, θB = 0.1 and the delay is expected to be of length

25 (see blue line), an additional 2% of patients, on average, will receive the superior

treatment when implementing FCRDP over CRDP. Note that these differences tend

to increase with the expected delay length. Similarly to when the delays were fixed,

the corresponding changes in power, bias and MSE are minimal.
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Figure 4.3.6: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the CRDP
and FCRDP designs when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different expected
delay lengths (estimated over 1, 000, 000 simulations).

4.4 Summary

The purpose of this chapter was to gain insight into how the CRDP design, proposed

in Chapter 3, behaves when responses are observed after a delay. In Section 4.2, we
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demonstrated that the benefits of the CRDP, namely, a large number of patients on

the superior treatment, are slightly reduced when there is a delay in observing the

response. However, overall, CRDP was shown to be fairly robust to delays.

Section 4.3 provided two suggestions of how to account for a fixed delay with a view

to ameliorate the associated loss in patient benefit. The first, in Section 4.3.1, was a

näıve approach (referred to as CRDP-TH) which involved altering the time horizon

of the corresponding MDP. Although this was actually shown to reduce the patient

benefit further for CRDP, some important issues, such as the underlying interaction

between the delay and constraint, were raised. Furthermore, when removing the

constraint and randomisation, modifying the time horizon had practically no effect

on the performance measures. An interesting topic for further research, which will

help make the results more interpretable, is how to appropriately adjust the degree of

constraining within the CRDP formulation to ensure that it remains the same for each

design. One way to achieve this for the CRDP-TH design is to subtract the expected

number of patients that are on the inferior arm during the final d allocations from the

current degree of constraining. These translate to responses which the current design

is “blind” to because they only become available after all allocations have been made,

hence why the constraint ends up being stricter than desired.

The second approach, referred to as FCRDP and described in Section 4.3.2, in-

volved formally extending the associated MDP to incorporate information on the

pipeline patients. Therefore, rather than only using the responses once they become

available, as in the previous designs, patients are still able to contribute valuable infor-

mation even whilst in the pipeline. F(CR)DP was shown to consistently outperform

(CR)DP, in terms of patient benefit, for all delay lengths with minimal impact on the

associated power, bias and MSE.

Although the increase in patient benefit was found to be small, at least for

the simulation scenarios considered here, this may be critically important in trials
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where treatment failures are particularly undesirable, or even fatal (as in some life-

threatening diseases), (Hu and Rosenberger, 2006, Chapter 8). Therefore, the value

of such results should not be underestimated, especially since we are obtaining this

worthwhile improvement at no extra cost simply by implementing a different algo-

rithm to allocate the patients.

The key information gleaned from this chapter is summarised in Figure 4.4.1,

which presents the results of (CR)DP and F(CR)DP, alongside those of standard

fixed randomisation and DRPWR, all on the same plot for a specific scenario over the

entire range of delay lengths.

The F(CR)DP model is formulated assuming that patients arrive sequentially and

have a fixed response time, thus giving rise to a fixed number of patients in the

pipeline. This is somewhat restrictive in a clinical trial setting where responses of

different patients often arrive randomly. Consequently, we then evaluated how the

F(CR)DP design behaves when the delay in response is instead random, and com-

pared it to the performance of (CR)DP with random delay. The results showed that

the improvements in patient benefit, achieved by F(CR)DP, persist even when im-

plemented in a random delay setting. When implementing the random delay setting,

we assumed that the delay in response is independent of the treatment. However, in

practice, different treatments are likely to give rise to different delay lengths. There-

fore, further investigation is required to consider the performance of (CR)DP and

F(CR)DP when the response distributions vary for each treatment.

In the following chapter, we explore whether generalising the F(CR)DP model to

allow for a random number of patients in the pipeline may enhance the performance

of the design for the random delay setting even further.
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Figure 4.4.1: The changes in power, % of patients on the superior treatment and the
average bias of the treatment effect estimator for (CR)DP, F(CR)DP, DRPWR and
fixed randomisation as the fixed delay length increases, when n = 75, θA = 0.1 and
θB = 0.5 (estimated over 1, 000, 000 simulations).
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4.5 Appendix

4.5.1 Performance Measures for DP with Fixed Delay
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Figure 4.5.1: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the DP
design when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different fixed delay lengths
(estimated over 100, 000 simulations).
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4.5.2 Performance Measures for DP with Random Delay
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Figure 4.5.2: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the DP
design when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different expected delay lengths
(estimated over 100,000 simulations).
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4.5.3 Performance Measures for DRPWR with Fixed Delay
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Figure 4.5.3: The changes in power (and type I error), % of patients on the supe-
rior treatment, the average bias and MSE of the treatment effect estimator for the
DRPWR when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different fixed delay lengths
(estimated over 100, 000 simulations).
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4.5.4 Performance Measures for DRPWR with Random De-

lay
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Figure 4.5.4: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the DR-
PWR when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different expected delay lengths
(estimated over 100, 000 simulations).
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4.5.5 Performance Measures for DP vs. FDP
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Figure 4.5.5: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the DP
and FDP designs when n = 75, θA = 0.5 and θB ∈ (0.1, 0.9) for different fixed delay
lengths (estimated over 1, 000, 000 simulations).



Chapter 5

Extension to Random Arrivals

5.1 Introduction

This chapter generalises the F(CR)DP model, proposed in Chapter 4, to the more

realistic setting of when there is a random, rather than fixed, number of patients in

the pipeline. This encompasses a wide variety of trial contexts, including those with

a: (i) constant inter-arrival time and fixed time to response, in which case the model

simplifies to F(CR)DP, (ii) constant inter-arrival time and random time to response,

(iii) random inter-arrival time and fixed time to response, or (iv) random inter-arrival

time and random time to response.

Random arrivals of patients are most representative of clinical trial practice, es-

pecially in the rare disease setting where there is unlikely to be a constant influx

of patients. Moreover, since we are concerned with a binary outcome, interest is in

whether the response has been observed by a fixed follow-up time after treatment.

Thus, we present and illustrate the methodology proposed in this chapter for the most

pertinent trial setting of random arrivals with a fixed follow-up time. Nonetheless, it

can still be easily applied to all of the aforementioned contexts. This is in contrast

to many response-adaptive designs in the literature which, as Ahuja and Birge (2016)

127
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point out as a limitation, “may not be fully applicable in all trial contexts . . . e.g.

when time to observation of the primary endpoint is a random variable”.

Even those methods that have been developed specifically with delay in mind are

not designed for all settings (i)–(iv). For example, although the (group sequential)

designs proposed by Hampson and Jennison (2013) do allow for a random number

of patients in the pipeline, they rely on there being a fixed delay in response and

cannot accommodate stochastic delays, thus they cannot be applied to settings (ii)

or (iv). It has already been mentioned in Chapter 4 that the model by Chick et al.

(2017) is proposed under the assumption of a constant arrival rate and fixed time to

response, thus only applies to setting (i). Further, although the bandit-based designs

by Hardwick et al. (2006) are proposed for a binary trial with random arrivals and

a random response time, their designs hinge on the assumption of Poisson arrivals

and exponential response times. This is not the case for our design which is not

limited/restricted to a specific arrival or response distribution.

5.2 Model Formulation

Recall that the MDP formulation consists of a state space, a set of actions, transition

probabilities and rewards. Each of these components will now be defined for the

random delay version of the CRDP model, which we will henceforth refer to as RCRDP

for convenience.

Although we present this model in the two-armed setting for simplicity, it is im-

portant to note that the principles used extend to the multi-armed setting (as with

the CRDP and FCRDP models defined in Chapters 3 and 4, respectively).
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5.2.1 Decision Epochs and State Space

In general, decision epochs refer to the points in time at which decisions are made

based upon the current state of the system (Puterman, 2014). In the current context,

we define the decision epochs t ∈ [0, n− 1] to be the time when patient t + 1 arrives

and is allocated to a treatment (where arrival time and allocation time are assumed

to be analogous). For example, decision epoch t = 0 corresponds to the arrival and

allocation of the first patient which defines the start of the trial. Refer to the timeline

in Figure 5.2.1 which illustrates the decision epochs as black crosses. Note that

the patient allocated at each decision epoch will immediately enter the appropriate

pipeline.

Since n is finite, we have a finite horizon problem in which no decisions are made

after the final nth patient is allocated at decision epoch n− 1 (this is often referred to

as an n−1 period problem). However, for completeness and the purpose of evaluating

the final state of the system, we also include an “imaginary” epoch n in the model

(represented by the dashed vertical line in Figure 5.2.1) at which point the observation

of the last patient (and any other remaining pipeline observations) will be available.

The state space for this problem now includes two additional parameters, uA,t

and uB,t, which represent the number of pipeline patients on treatments A and B,

respectively, just before patient t+ 1 is allocated at decision epoch t. Therefore, uA,t

and uB,t can take values from 0 to t since it is now possible for pipeline A or pipeline

B to include all of the allocated patients. Thus, the state vector, which summarises

all of the information available just before decision epoch t, is given by

zt = (uA,t, uB,t, sA,t, fA,t, sB,t, fB,t, ñ) if 0 ≤ t ≤ n− 1, (5.2.1)

where sA,t, fA,t, sB,t, fB,t are the total numbers of successes and failures observed on

each treatment to date, and ñ = n− t is the number of patients in the trial remaining
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to be treated. Note that the addition of epoch n at the end (in which no actual

decision is made) leads to the definition of zn = (0, 0, sA,n, fA,n, sB,n, fB,n, 0) (where

sA,n + fA,n + sB,n + fB,n = n).

5.2.2 Action Set

The set of randomised actions, A = {1, 2}, remains as it was for CRDP and FCRDP

in Chapters 3 and 4, respectively. That is, at = 1 denotes allocating patient t + 1 at

decision epoch t to treatment A with probability p and treatment B with probability

1− p, and at = 2 denotes allocating patient t + 1 to treatment B with probability p

and treatment A with probability 1− p (where 0.5 ≤ p ≤ 1 for a two-armed trial).

5.2.3 State Transitions

We now need to define all the possible state transitions that can occur under action

at during time period t, i.e. the random time between decision epochs t and t + 1,

before we specify their corresponding probabilities, P(zt+1 | zt, at). This requires the

introduction of the following notation.

Let Kt ∈ {0, . . . , uA,t + uB,t + 1} be the random number of responses observed (or

equivalently, the number of patients leaving the pipeline) during period t (which could

include the patient allocated at decision epoch t if they respond before the arrival of

the next patient). We will denote the total number of patients in the pipeline just be-

fore decision epoch t by dt, so that dt = uA,t+uB,t. Out of the Kt = kt total responses

observed during period t, suppose that we observe RsA
t = rsAt (RsB

t = rsBt ) successes

and RfA
t = rfAt (RfB

t = rfBt ) failures on treatment A (B), where kA,t = rsAt + rfAt and

kB,t = rsBt + rfBt are the total numbers of responses from arms A and B, respectively.

For notational convenience, we will let Rt =
(
RsA
t , R

fA
t , R

sB
t , R

fB
t

)
represent the ran-

dom vector of responses and rt =
(
rsAt , r

fA
t , rsBt , rfBt

)
be the corresponding vector of

realisations.
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Then, just before decision epoch t + 1, the state vector now takes the following

general form:

zt+1 =
(
uA,t +mt − (rsAt + rfAt ), uB,t + 1−mt − (rsBt + rfBt ),

sA,t + rsAt , fA,t + rfAt , sB,t + rsBt , fB,t + rfBt , ñ− 1
)
,

(5.2.2)

where mt is an indicator variable taking the value 1 if patient t + 1 is allocated to

treatment A at decision epoch t, or 0 if patient t + 1 is allocated to treatment B at

decision epoch t.

To aid with the understanding and interpretation of the model set-up, we consider

the schematic in Figure 5.2.1 which clearly illustrates the ordering of events. In

particular, we first update the state vector zt and only then do we make an allocation

decision (represented by the crosses). This means that if an arrival and an observation

(of a different patient) happen at the same time, we first incorporate the observation

and then make the allocation. We see that at epoch t = 1 (when we allocate patient

2): uA,1 = 1 since patient 1 was allocated to treatment A and has not yet responded

so remains in pipeline A; uB,1 = 0; k1 = 2 because we observe a total of two responses

during period 1; r1 = (1, 1, 0, 0) because we observe one success and one failure from

A during period 1; m1 = 1 because patient 2 is allocated to treatment A. At epoch

t: kt = 3 since we have a total of three observations during period t; rt = (1, 0, 0, 2)

because we observe one success from A and two failures from B during period t;

mt = 0 because patient t+ 1 is allocated to treatment B. Just before patient t+ 2 is

allocated at epoch t+1: uA,t+1 = uA,t−1 since we observe one success from treatment

A during period t, and uB,t+1 = uB,t+1−2 since we first add patient t+1 (at epoch t)

to pipeline B and subsequently observe two failures from treatment B during period

t. Note that it is possible for patient t+ 1 allocated at epoch t to also respond during

period t, as depicted in the diagram for patients 2, t+ 1 and n.
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Figure 5.2.1: Schematic of model set-up showing the order in which events occur.

5.2.4 Transition Probabilities

We now turn our attention to the calculation of the transition probabilities which are

conditional on the state and action at the current decision epoch t and determine the

state of the system at the next decision epoch t+ 1. Under at = 1, these are given by:

P(zt+1 | zt, at = 1) =
1∑

m=0

P(Rt = rt,mt = m | zt, at = 1)

=
1∑

m=0

P(Rt = rt | zt, at = 1,mt = m) · P(mt = m | zt, at = 1)

= P(Rt = rt | zt, at = 1,mt = 0) · (1− p) +

P(Rt = rt | zt, at = 1,mt = 1) · p,

where P(mt = 0 | zt, at = 1) = 1− p and P(mt = 1 | zt, at = 1) = p. We can simplify

this further by noting that we do not need to condition on action at if we know the

value of mt. Thus, we have

P(zt+1 | zt, at = 1) = P(Rt = rt | zt,mt = 0) · (1− p) + P(Rt = rt | zt,mt = 1) · p.

(5.2.3)
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The transition probabilities under at = 2 are defined similarly to (5.2.3), but with the

randomisation probabilities p and 1− p exchanged, that is,

P(zt+1 | zt, at = 2) = P(Rt = rt | zt,mt = 0) · p+ P(Rt = rt | zt,mt = 1) · (1− p).

(5.2.4)

We now show how the components of the transition probabilities in (5.2.3) and

(5.2.4) can be calculated. Since P(Rt = rt | zt,mt = 0) and P(Rt = rt | zt,mt = 1)

are derived in exactly the same way, we will only show how P(Rt = rt | zt,mt = 1)

is calculated. For clarity, we will use · to represent zt and mt = 1 from hereafter.

By conditioning on KA,t = kA,t and KB,t = kB,t, and applying the law of total

probability, P (Rt = rt | ·) can be expressed as follows

uA,t+1∑
kA,t=0

uB,t∑
kB,t=0

P (Rt = rt | KA,t = kA,t, KB,t = kB,t, zt) · P (KA,t = kA,t, KB,t = kB,t | ·) ,

(5.2.5)

where the first term in equation (5.2.5) simplifies as

P (Rt = rt | KA,t = kA,t, KB,t = kB,t, zt)

=


P (RsA

t = rsAt , R
sB
t = rsBt | KA,t = kA,t, KB,t = kB,t, zt) ,

if kA,t = rsAt + rfAt and kB,t = rsBt + rfBt ,

0, otherwise.

(5.2.6)

and, by conditional independence, the first line in (5.2.6) becomes

P (RsA
t = rsAt | KA,t = kA,t, zt) · P (RsB

t = rsBt | KB,t = kB,t, zt) . (5.2.7)

Since

R
sj
t | Kj,t = kj,t, zt ∼ Binomial

(
kj,t,

s̃j,t

s̃j,t + f̃j,t

)
for j ∈ {A,B},
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equation (5.2.7) is simply the product of two binomial probability mass functions, as

follows(
kA,t
rsAt

)
·

(
s̃A,t

s̃A,t + f̃A,t

)r
sA
t

·

(
f̃A,t

s̃A,t + f̃A,t

)r
fA
t

·
(
kB,t
rsBt

)
·

(
s̃B,t

s̃B,t + f̃B,t

)r
sB
t

·

(
f̃B,t

s̃B,t + f̃B,t

)r
fB
t

,

where, recall from Chapter 3, that s̃j,t and f̃j,t represent the posterior number of

successes and failures, respectively, on each arm j (i.e. including the prior pseudo-

observations). To calculate the second expression in (5.2.5), namely, the joint proba-

bility of KA,t and KB,t conditional on zt and mt = 1, we first note that KA,t and KB,t

are not independent because they are both constrained by the total number of patients

in the pipeline, dt (thus knowledge of kA,t influences what values kB,t can take, and vice

versa). Since kA,t + kB,t = kt, it is helpful to re-express P (KA,t = kA,t, KB,t = kB,t | ·)

as

P (KA,t = kA,t, Kt = kA,t + kB,t | ·) =

P (KA,t = kA,t | Kt = kA,t + kB,t, ·) · P (Kt = kA,t + kB,t | ·) . (5.2.8)

The first term in equation (5.2.8) gives the probability of receiving kA,t responses

from treatment A given that the total number of responses observed during period t

is kA,t + kB,t, and can be calculated as follows. We will consider what happens to this

probability in the cases when: (i) patient t+ 1 is observed during period t (i.e. before

arrival of patient t+ 2), and (ii) patient t+ 1 is not observed during period t.

(i) First, if patient t + 1 is observed, this implies that all other patients in the

pipeline must have been observed1, that is, kA,t = uA,t + 1 and kB,t = uB,t. Thus, in

1Patients will be observed in the same order as they are allocated owing to the fixed follow-up
time.
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this case

P (KA,t = kA,t | Kt = kA,t + kB,t, ·) = P (KA,t = uA,t + 1 | Kt = uA,t + uB,t + 1, ·) = 1.

(5.2.9)

Note that if kB,t 6= uB,t, the above probability will be 0.

(ii) Now, suppose that patient t+ 1 is not observed, that is, kA,t ≤ uA,t. Then, we

obtain the following probability

P (KA,t = kA,t | Kt = kA,t + kB,t, ·) =

(
kA,t + kB,t

kA,t

)
· uA,t
uA,t + uB,t

· uA,t − 1

uA,t + uB,t − 1
·

. . . · uA,t − kA,t + 1

uA,t + uB,t − kA,t + 1
· uB,t
uA,t + uB,t − kA,t

· . . . · uB,t − kB,t + 1

uA,t + uB,t − kA,t − kB,t + 1
,

(5.2.10)

which can be succinctly summarised using binomial coefficients as

(
kA,t + kB,t

kA,t

)
·
(
uA,t − kA,t + uB,t − kB,t

uA,t − kA,t

)/(
uA,t + uB,t

uA,t

)
. (5.2.11)

This is the probability mass function of a hypergeometric distribution with parameters

uA,t + uB,t, kA,t + kB,t and uA,t.

The calculation of the second term in equation (5.2.8), i.e. P (Kt = kA,t + kB,t | ·),

is now discussed. First, we introduce some further notation. Suppose that we have

obtained a total of xt = sA,t+fA,t+ sB,t+fB,t observations just before decision epoch

t. Further, let τi denote the random inter-arrival time of patient i ∈ {1, . . . , n} (where

τ1 = 0) and δ be some constant representing the fixed follow-up time (which is the

same for every patient). Thus, it follows that
∑xt

i=1 τi is the arrival time of patient xt

and
∑xt

i=1 τi + δ is the corresponding observation time.

The possible events that can happen during period t (i.e. the random time between

two allocations) are as follows:

(i) The first pipeline patient, i.e. patient xt + 1, is observed. This happens at time
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xt+1∑
i=1

τi + δ.

(ii) The second pipeline patient, i.e. patient xt + 2, is observed. This happens at time
xt+2∑
i=1

τi + δ.

...

(dt + 1) The final pipeline patient, which is the patient allocated most recently at

decision epoch t, i.e patient xt+dt+1, is observed. This happens at time
xt+dt+1∑
i=1

τi+δ.

The next patient to be allocated (at epoch t+ 1) is patient xt +dt + 2, which happens

at time
xt+dt+2∑
i=1

τi.

These allow us to derive the conditions required to observe kt responses. In par-

ticular:

• No responses (kt = 0) will be observed during period t if and only if patient

xt + dt + 2 is allocated before the first-in-pipeline patient, patient xt + 1, is

observed. This occurs when

xt+dt+2∑
i=1

τi <
xt+1∑
i=1

τi + δ, i.e.
xt+dt+2∑
i=xt+2

τi < δ. (5.2.12)

• kt = lt responses will be observed during period t, where 1 ≤ lt ≤ dt, if and only

if patient xt + dt + 2 is allocated both after the lt
th pipeline patient, i.e. patient

xt + lt, is observed and before patient xt + lt + 1 is observed. This occurs when

xt+dt+2∑
i=1

τi ≥
xt+lt∑
i=1

τi + δ, i.e.
xt+dt+2∑
i=xt+lt+1

τi ≥ δ and

xt+dt+2∑
i=1

τi <

xt+lt+1∑
i=1

τi + δ, i.e.
xt+dt+2∑
i=xt+lt+2

τi < δ.

(5.2.13)

Note that if patient xt + lt does not respond, this implies that all other pipeline

patients thereafter must not respond since their responses are ordered owing to
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the fixed follow-up time of each patient.

• If every pipeline patient is observed during period t, we will obtain kt = dt + 1

observations. This will happen if and only if patient xt+dt+2 is allocated after

patient xt+dt+1, i.e. the final pipeline patient, has been observed. This occurs

when
xt+dt+2∑
i=1

τi ≥
xt+dt+1∑
i=1

τi + δ, i.e. τxt+dt+2 ≥ δ. (5.2.14)

At this point, we are now in a position where the corresponding probabilities

of the events in (5.2.12), (5.2.13) and (5.2.14) can be derived for a specified inter-

arrival distribution. We outline this in Example 1 below before showing that we

can, in fact, condition on further information to make these probabilities closer to

their true values which could be obtained if we knew the exact arrival (treatment)

times. For illustrative purposes, and in keeping with related literature (e.g. Biswas

and Coad, 2005; Hardwick et al., 2006; Zhang and Rosenberger, 2007), we will assume

from hereon that the inter-arrival times τi are independent and identically distributed

(i.i.d.) exponential random variables with rate parameter equal to λ for all i ∈

{1, . . . , n}. However, note that the same principles easily apply to other distribution

types. Moreover, it is important to keep in mind that these probabilities are inherently

conditioned upon the information provided by the current state vector zt, but we omit

this explicit dependence from the following calculations for simplicity.

Example 1: No Further Conditioning

• Let W =
xt+dt+2∑
i=xt+2

τi. Since this is the sum of dt + 1 i.i.d. exponential random

variables, it follows that W ∼ Gamma(dt + 1, λ). Thus, from (5.2.12), the

probability of observing no responses during period t is given by

P(W < δ) =
γ(dt + 1, δλ)

Γ(dt + 1)
, (5.2.15)



CHAPTER 5. EXTENSION TO RANDOM ARRIVALS 138

that is, the cumulative distribution function of W , where γ is the lower incom-

plete gamma function and Γ is the gamma function.

• Next, we find the probability of (5.2.13). Let X = τxt+lt+1 ∼ Exp(λ) and

Y =
xt+dt+2∑
i=xt+lt+2

τi ∼ Gamma(dt − lt + 1, λ). It follows that the probability of

observing lt responses during period t, where 1 ≤ lt ≤ dt, is equivalent to

P [(X + Y ≥ δ) ∩ (Y < δ)] =

δ∫
0

∞∫
δ−y

fX,Y (x, y) dx dy =
(δλ)dt−lt+1

Γ(dt − lt + 2)
·exp(−δλ),

(5.2.16)

where fX,Y is the joint probability density function of X and Y .

• Finally, to calculate the probability of (5.2.14), that is, of observing all dt + 1

responses during period t, we require P(Z ≥ δ), where Z = τxt+dt+2 ∼ Exp(λ),

which is given by

1− FZ(δ) = exp(−δλ), (5.2.17)

where FZ is the cumulative distribution function of Z evaluated at δ.

We now need to check that the probabilities in (5.2.15), (5.2.16) and (5.2.17) sum

to one. We have

dt+1∑
kt=0

P(Kt = kt) =
γ(dt + 1, δλ)

Γ(dt + 1)
+

{
1 +

dt∑
kt=1

(δλ)dt−kt+1

Γ(dt − kt + 2)

}
· exp(−δλ). (5.2.18)

Applying the recurrence relation γ(dt + 1, δλ) = dt · γ(dt, δλ) − (δλ)dt · exp(−δλ)

(see e.g. Jameson, 2016, p.300) iteratively, we can express γ(dt + 1, δλ) in terms of

γ(1, δλ) as follows

γ(dt+1, δλ) = Γ(dt+1)·γ(1, δλ)−Γ(dt+1)·

{
dt∑
kt=1

(δλ)dt−kt+1

Γ(dt − kt + 2)

}
·exp(−δλ), (5.2.19)

where γ(1, δλ) = 1 − exp(−δλ). Substituting (5.2.19) into equation (5.2.18) and
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simplifying gives the value 1, as required.

Further Conditioning

To make the calculations of P (Kt = kt | ·) more efficient, we note that there is ad-

ditional information which can be conditioned upon. In particular, recall that the

current state at epoch t is given by the vector zt (refer to the schematic in Figure

5.2.1) from which the total number of observations, xt, and patients in the pipeline, dt,

by epoch t can be deduced. Therefore, by conditioning on zt (which we do throughout

calculation of the transition probabilities), this implies that the allocation of patient

xt + dt + 1 (i.e. the patient allocated most recently at epoch t) must happen after

we have observed xt responses, but before we have observed xt + 1 responses. This

translates to the following pair of conditions

xt+dt+1∑
i=1

τi ≥
xt∑
i=1

τi + δ i.e.
xt+dt+1∑
i=xt+1

τi ≥ δ and

xt+dt+1∑
i=1

τi <
xt+1∑
i=1

τi + δ i.e.
xt+dt+1∑
i=xt+2

τi < δ,

which we will denote by the event C. That is

C =

(
xt+dt+1∑
i=xt+1

τi ≥ δ

)
∩

(
xt+dt+1∑
i=xt+2

τi < δ

)
. (5.2.21)

C represents the ideal conditioning which makes full use of the available information

contained in zt and is therefore the version that we implement2. This will result

in a better approximation to the true transition probabilities, and hence optimal

solution, which would be attained if we conditioned on the exact arrival times of the

pipeline patients. However, introducing arrival times into zt would make the problem

2For illustrative purposes, and to show the natural development of ideas, we present the initial
event we conditioned upon, along with the derivation of the corresponding marginal probabilities, in
Example 2 of Appendix 5.5.1.
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intractable.

As previously mentioned, the exact evaluation of the corresponding probabilities

will depend upon the distributional assumption of τi. Although analytical evaluation

may be feasible for some distributions, not all distributions will give rise to prob-

abilities that can be expressed in closed-form (as seen for the exponential case in

Example 1 above and Example 2 of Appendix 5.5.1, which rely on the incomplete

gamma function). Therefore, the probabilities of the events in (5.2.12), (5.2.13) and

(5.2.14) when conditioned on C will be approximated using Monte Carlo simulation

so that our implementation remains as general as possible.

5.2.5 Expected One-Period Rewards

To complete the formulation of the MDP, we need to define the expected one-period

(or immediate) rewards after transitioning from state vector zt to zt+1 under action

at, which we denote by Rat(zt). This depends on the objective function of interest

which, in this case, is to maximise the expected total number of patient successes

in the trial3 (formally defined in Chapter 3), whereby we obtain a reward of 1 for a

success and 0 for a failure. The expected one-period reward for periods 0 ≤ t ≤ n− 2

under mt is given by

Rmt(zt) =

uA,t+mt∑
r
sA
t =0

uA,t+mt−r
sA
t∑

r
fA
t =0

uB,t+1−mt∑
r
sB
t =0

uB,t+1−mt−r
sB
t∑

r
fB
t =0

(rsAt + rsBt ) · P(Rt = rt | ·),

(5.2.22)

where we refer the reader to equation (5.2.5) for the calculation of P(Rt = rt | ·).

After the final patient has been allocated at epoch t = n− 1, i.e. when ñ = 0, we

use the information accrued during the trial to predict how many of the remaining

uA,n−1 + uB,n−1 + 1 pipeline patients will have a success. Consequently, the expected

3Note that this approach applies to objective functions beyond the bandit objective of maximising
reward.
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one-period reward for period n− 1 under mt is

Rmt(zt) = (uA,t +mt) ·
s̃A,t

s̃A,t + f̃A,t
+ (uB,t + 1−mt) ·

s̃B,t

s̃B,t + f̃B,t
+ ε (5.2.23)

for t = n− 1, where

ε =

 −n, if uA,t +mt + sA,t + fA,t < ` or uB,t + 1−mt + sB,t + fB,t < `,

0 otherwise,

which serves as a penalty to avoid the design choosing states that give rise to fewer

than the desired number of allocations on each arm, `. This avoids extreme imbalance

between the treatment arms (refer to Section 3.2.3).

It follows that the corresponding expected one-period rewards under action at = 1

and at = 2, respectively, for periods 0 ≤ t ≤ n− 1 are of the form

Rat=1(zt) = p · Rmt=1(zt) + (1− p) · Rmt=0(zt) and

Rat=2(zt) = (1− p) · Rmt=1(zt) + p · Rmt=0(zt),

(5.2.24)

with Rmt replaced by (5.2.22) for 0 ≤ t ≤ n − 2 and (5.2.23) for t = n − 1. We

will take the randomisation probability p to be 0.9 in the following simulations (as in

Chapter 3).

5.2.6 Obtaining the Optimal Solution

The Bellman equation, defined in (2.2.2) of Chapter 2, immediately follows as the

expected one-period rewards, defined in (5.2.24), plus the expected (undiscounted)

future rewards. As in Chapters 3 and 4, the corresponding optimisation problem is to

maximise the expected total reward over the entire finite time horizon for a uniform

prior distribution on each arm at t = 0, which is solved exactly using backward

induction (described in Section 2.2.3 and Appendix 3.6.1). This gives rise to the
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optimal treatment allocation policy which prescribes the optimal action to use in

every possible combination of states for all t, along with the corresponding maximum

expected total reward. For example, when the system is in state zt = (uA,t = 5, uB,t =

8, sA,t = 2, fA,t = 4, sB,t = 3, fB,t = 3, ñ = 35) just before epoch t = 25, the optimal

action obtained from the RCRDP design is a25 = 2. For a trial with n = 60 patients,

treatment success probabilities (θA, θB) = (0.5, 0.7), exponential inter-arrival times

with rate parameter λ = 20 and a follow-up time of δ = 1, this is interpreted as

follows. If there are 13 patients in the pipeline (5 on A and 8 on B), 12 patients

which have currently been observed (2 successes from arm A, 4 failures from arm A,

3 successes from arm B and 3 failures from arm B) with 35 patients remaining to be

treated, then the 26th patient will be randomised to arm B with probability 0.9 (and

arm A with probability 0.1).

5.3 Simulation Results

We implement the RCRDP design assuming that patients arrive via a Poisson pro-

cess with rate λ or, equivalently, that the inter-arrival times follow i.i.d. exponential

distributions, τi ∼ Exp(λ) (i = 1, . . . , n), with mean 1/λ. As patients arrive, they are

immediately allocated to either treatment A or B based on data accrued so far. After

a follow-up time of δ has elapsed, the patient’s outcome (either a success or failure)

is observed and used to update the states accordingly. We assume that the patient

arrival rate λ and follow-up time δ is known. Note that this delay structure is purely

for illustrative purposes and the RCRDP design can be applied to any appropriate

arrival and/or response time distribution. As an example, results for a small trial with

inter-arrival times determined by the discrete analogue of the exponential distribution

instead, i.e. the geometric distribution, are illustrated in Appendix 5.5.2.

We present the simulation results for a trial with 60 patients and treatment success
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probabilities as used in previous chapters, namely, θA = 0.5 and θB ∈ (0.1, 0.9).

Wason et al. (2019) highlight that “methodological papers often do not consider the

rate of enrolment versus the length of follow-up for outcomes when quantifying the

efficiency advantages of adaptive designs.” However, we do consider this here by

fixing the follow-up time at δ = 1 and varying the arrival rates, which we take to be

λ = 10, 20, 30, 50. This means that if a unit of time is interpreted as one week, say,

then λ patients are expected to enter the trial per week, each of which are followed

up exactly one week later. Also included are the results corresponding to values of

λ→ 0 and λ→∞, which represent the two extreme situations of immediate response

(IR) and equal fixed randomisation (FR), respectively.

For comparative purposes, we plot the analogous results for CRDP (introduced in

Chapter 3) and FCRDP (introduced in Chapter 4) alongside those for RCRDP, all

of which are the average of 1, 000, 000 simulation runs. These are displayed in Figure

5.3.1 which is discussed below. Moreover, to check that the differences between CRDP,

FCRDP and RCRDP are not attributed to any underlying interaction between the

delay length, constraint and randomisation (refer to Chapter 4), we also consider the

optimal version of each design which has the constraint and randomisation removed.

These are referred to as DP, FDP and RDP, and the corresponding results are pre-

sented in Appendix 5.5.3 where they are shown to exhibit similar patterns to those

observed for CRDP, FCRDP and RCRDP, respectively.

First note that as the arrival rate λ increases, the expected inter-arrival time

decreases and, since the follow-up time remains fixed, the number of patients in the

pipeline will accumulate. In other words, the “delay” length increases with λ.

The top left plot in Figure 5.3.1 shows that there is practically no difference

between the power values obtained for all three versions of the design. As λ (and

hence the delay length) increases, we see that the power also increases which reaffirms

what was found in Chapter 4. When λ = 50 (see red line), the resulting power is
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approximately the same as that achieved by FR (i.e. when λ→∞).

In terms of the percentage of patients allocated to the superior treatment (top

right plot in Figure 5.3.1), which is indicative of patient benefit, we observe that

RCRDP offers an improvement over CRDP for all values of λ (excluding the two

extremes in which RCRDP reduces to FR and CRDP). For example, when θB = 0.1

and λ = 20 (see blue line), an additional 1% of patients, on average, will receive the

superior treatment. Similarly for an arrival rate which is half the trial size, λ = 30

(see green line). However, when RCRDP (see black, dot-dashed lines) is compared to

FCRDP (see coloured, dashed lines), the difference between their performance is very

small.

Further note that as λ increases, the patient benefit decreases (which is what we

expect from Chapter 4). In particular, the best case occurs when all responses have

been observed immediately so that full information is retained (see pink line), whilst

the “worst” case occurs when no responses have been observed until after all patients

have been allocated, i.e. FR (see grey line).

The additional gains in patient benefit achieved by RCRDP over CRDP are also

clearly demonstrated in Figure 5.5.1 of Appendix 5.5.2 for the geometric case.

The bottom two plots in Figure 5.3.1 illustrate the changes in the average bias and

MSE of the treatment effect estimator, which decrease as the arrival rate λ increases.

The observed differences in bias and MSE between the designs are negligible (note

the extremely small scale of the plot), with RCRDP and FCRDP almost identical.
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Figure 5.3.1: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the CRDP,
FCRDP and RCRDP designs when n = 60, θA = 0.5, θB ∈ (0.1, 0.9), τi ∼ Exp(λ)
and δ = 1 (estimated over 1, 000, 000 simulations). IR, immediate response and FR,
fixed randomisation.

5.4 Summary

In this chapter, we have built upon the ideas introduced in Chapters 3 and 4 to present

a general model, R(CR)DP, for the bandit problem with delayed information using
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the Bayesian MDP framework and solution by dynamic programming. Incorporating

delayed information provides a powerful modelling framework which can not only be

used for a greater variety of real life clinical trials but, as discussed in Caro and Yoo

(2010), “can be generalised to aid decision making in many [other] application areas.”

Examples include, but are not limited to, online advertising (Chapelle, 2014; Vernade

et al., 2017), dynamic assortment (Caro and Gallien, 2007) and bandwidth allocation

(Ehsan and Liu, 2004).

We illustrated the workings of RCRDP for random arrivals with fixed response

times (since this is most pertinent to clinical trials with a binary endpoint), but the

fundamental principles apply to the most general structure of random arrivals with

random response times (as in survival trials, for example, which are beyond the scope

of this thesis). In particular, the state space (and hence dimension/computational

complexity of the problem), action set, state transitions and specification of the cor-

responding Bellman equation will remain the same. The transition probabilities, and

consequently the reward function, will take a slightly different form because the order

in which responses are observed will no longer be known (which will affect the deriva-

tion of equation (5.2.8)). However, these can still be computed using Monte Carlo

simulation.

Moreover, although we implemented RCRDP assuming exponential inter-arrival

times, the underlying DP formulation will remain the same regardless of the arrival

and/or response distribution which can simply be adjusted within the Monte Carlo

simulation. This is an advantage over the DP solution implemented by Hardwick et al.

(2006, Approach II) which is more restrictive and applies specifically to the exponen-

tial delay model. In particular, Hardwick et al. (2006) comment that, “unfortunately,

optimising and evaluating different arrival and response delay models can involve sig-

nificantly different recursive equations, and the computational requirements can vary

dramatically.”
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The first approach suggested by Hardwick et al. (2006) is the optimal design for

the standard two-armed bandit problem with delay, based upon the DP approach.

The corresponding Bellman equation is stated in Hardwick et al. (2006, Appendix

A) and takes a similar form to ours. However, there is no explanation provided

as to how the probabilities t, q1, q2, equivalent to our P (KA,t = kA,t, KB,t = kB,t | ·),

P (RsA
t = rsAt | KA,t = kA,t, zt), P (RsB

t = rsBt | KB,t = kB,t, zt) (see equation (5.2.5)),

can be calculated. Furthermore, they do not implement this solution because, at

the time of publication, it was computationally infeasible. In contrast, we are able to

implement our DP solution to the bandit problem with delay (using the programming

language R) for sample sizes up to 100 on a standard laptop with 16GB of RAM. Recall

that this only needs to be computed once and can then be stored for future use.

Our results showed that RCRDP consistently improved patient benefit compared

to CRDP, with an inconsequential effect on the corresponding power, bias and MSE.

However, similar gains were also achieved by the FCRDP design, at least for the

setting considered here. Therefore, given the additional complexity and increased

computational requirements associated with RCRDP, the FCRDP design is prefer-

able4. It would be interesting to see if the FCRDP and RCRDP designs continue to

perform similarly for other inter-arrival distributions that do not possess the mem-

oryless property (e.g. the Weibull distribution), as well as for more general settings

involving random arrivals and random response times. This forms a topic for future

work.

The results also illustrated that the reformulation of the problem in terms of

random arrivals and a fixed follow-up time provides the same conclusions as those

obtained in Chapter 4 for the case of sequential arrivals and a random response time.

In this work, we have assumed that only information on the primary endpoint is

4This point has been highlighted in Wason et al. (2019), for example, which states that “it is also
important to carefully consider reducing the complexity of an adaptive design when the efficiency
gains are marginal”.
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available for updating the allocation probabilities. However, many clinical trials in-

clude a short-term or surrogate endpoint which is correlated with, and observed more

quickly than, the primary endpoint (e.g. Tamura et al., 1994). Therefore, an “alter-

native is to adapt on the basis of some surrogate measure” (Rosenberger and Lachin,

1993). This approach has been considered in the group sequential setting by Hamp-

son and Jennison (2013), for example, who demonstrated that the loss of efficiency

caused by a delayed response can be ameliorated by incorporating information on the

short-term endpoint. This raises the question of how data on a short-term endpoint

can be incorporated into the proposed designs. The inclusion of short-term endpoints

into RAR methods has not received much attention in the literature (Nowacki et al.,

2017) and hence provides an opportune area for further research.

An alternative approach that can be implemented to dilute the effects of delayed

responses is block (or cohort) RAR, in which the allocation probabilities are updated

only after groups of patients respond, rather than after each individual patient re-

sponds (Rosenberger and Lachin, 1993; Karrison et al., 2003; Sverdlov et al., 2012;

Perchet et al., 2016). A block RAR design, which is also less computationally intensive

than the DP-based designs discussed so far, is proposed in the following chapter.

5.5 Appendix

5.5.1 Example 2: Initial Version of Further Conditioning

As discussed in Section 5.2.4, obtaining the transition probabilities requires evaluation

of P (Kt = kt | ·), where kt = 0, . . . , dt + 1, for every possible value of dt. This can

be achieved by calculating the probabilities of the events defined in (5.2.12), (5.2.13)

and (5.2.14) (which was illustrated in Example 1 for exponential inter-arrival times).

However, we can condition on further information which will improve the accuracy

of the probability estimates. Here, we provide the initial version that was considered
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before implementing the stricter conditioning defined in (5.2.21). This example also

includes the exact derivation of the corresponding probabilities for exponential inter-

arrival times.

Initially, we conditioned on the fact that the allocation of patient xt + dt + 2 must

happen after we have observed xt responses. That is,

xt+dt+2∑
i=1

τi ≥
xt∑
i=1

τi + δ, i.e.
xt+dt+2∑
i=xt+1

τi ≥ δ. (5.5.1)

• To calculate the probability that kt = 0, let W =
xt+dt+2∑
i=xt+2

τi. Since this is the sum

of dt + 1 i.i.d. exponential random variables, it follows that W ∼ Gamma(dt +

1, λ). Thus, from (5.2.12), the probability of no observations conditional on the

event in (5.5.1) is given by

P(W < δ | W + τxt+1 ≥ δ) =
P(W < δ,W + τxt+1 ≥ δ)

P(W + τxt+1 ≥ δ)
. (5.5.2)

To calculate the numerator of (5.5.2), let V = τxt+1 ∼ Exp(λ). Thus,

P(W < δ,W + V ≥ δ) =

δ∫
0

∞∫
δ−w

fV,W (v, w) dv dw =
(δλ)dt+1 · exp(−δλ)

Γ(dt + 2)
,

(5.5.3)

where fV,W is the joint probability density function of V and W .

The denominator of (5.5.2) is given by

P(W + V ≥ δ) = 1− P(W + V < δ) = 1− γ(dt + 2, δλ)

Γ(dt + 2)
, (5.5.4)

where V +W ∼ Gamma(dt+2, λ) and γ is the lower incomplete gamma function.

Therefore, from (5.5.3) and (5.5.4), it follows that the probability of obtain-
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ing no observations during period t is given by

(δλ)dt+1 · exp(−δλ)

Γ(dt + 2)− γ(dt + 2, δλ)
. (5.5.5)

• Next, we use the events defined in (5.2.13) to find the probability that kt = lt,

conditional on the event in (5.5.1), where 1 ≤ lt ≤ dt. Let X =
xt+lt∑
i=xt+1

τi,

Y = τxt+lt+1 and Z =
xt+dt+2∑
i=xt+lt+2

τi, then the required probability can be expressed

as P {(Z < δ, Y + Z ≥ δ) | (X + Y + Z ≥ δ)}, which is equivalent to

P(Z < δ, Y + Z ≥ δ,X + Y + Z ≥ δ)

P(X + Y + Z ≥ δ)
=
P(Z < δ, Y + Z ≥ δ)

P(X + Y + Z ≥ δ)
. (5.5.6)

First, we calculate the numerator of (5.5.6) as follows

P(Z < δ, Y +Z ≥ δ) =

δ∫
0

∞∫
δ−z

fY,Z(y, z) dy dz =
(δλ)dt−lt+1 · exp(−δλ)

Γ(dt − lt + 2)
. (5.5.7)

The denominator, i.e. the probability of the event (5.5.1) being conditioned

upon, has already been calculated in equation (5.5.4). Thus, it follows that the

probability of observing lt responses, where 1 ≤ lt ≤ dt, during period t is

given by

Γ(dt + 2) · (δλ)dt−lt+1 · exp(−δλ)

Γ(dt − lt + 2) · {Γ(dt + 2)− γ(dt + 2, δλ)}
. (5.5.8)

• Finally, to calculate the probability that all pipeline patients are observed during

period t, that is, we receive dt + 1 observations during period t, we require the

probability of the event in (5.2.14) conditional on the event in (5.5.1), which is
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expressed by

P

(
τxt+dt+2 ≥ δ

∣∣∣∣ xt+dt+2∑
i=xt+1

τi ≥ δ

)
=

P

(
τxt+dt+2 ≥ δ,

xt+dt+2∑
i=xt+1

τi ≥ δ

)
P

(
xt+dt+2∑
i=xt+1

τi ≥ δ

)
=

P (τxt+dt+2 ≥ δ)

P

(
xt+dt+2∑
i=xt+1

τi ≥ δ

) ,

where P(τxt+dt+2 ≥ δ) = 1− P(τxt+dt+2 < δ) = exp(−δλ) and the denominator

is as calculated previously in (5.5.4). Therefore, the probability of obtaining

dt + 1 observations during period t is given by

Γ(dt + 2) · exp(−δλ)

Γ(dt + 2)− γ(dt + 2, δλ)
. (5.5.9)

The probabilities in (5.5.5), (5.5.8) and (5.5.9) sum to one, as required.
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5.5.2 Results for CRDP and RCRDP with Geometric Inter-

Arrival Times
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Figure 5.5.1: The changes in power (and type I error), % of patients on the superior
treatment, bias and MSE for RCRDP (dot-dashed line) and CRDP (solid line) with
geometric inter-arrival times when n = 40, δ = 30, θA = 0.5 and θB ∈ (0.1, 0.9)
(estimated over 100, 000 simulations).
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5.5.3 Results for the DP Variants with Exponential Inter-

Arrival Times
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Figure 5.5.2: The changes in power (and type I error), % of patients on the superior
treatment, the average bias and MSE of the treatment effect estimator for the DP,
FDP and RDP designs when n = 60, θA = 0.5, θB ∈ (0.1, 0.9), τi ∼ Exp(λ) and
δ = 1 (estimated over 100, 000 simulations). IR, immediate response and FR, fixed
randomisation.



Chapter 6

A Response-Adaptive

Randomisation Procedure for

Multi-Armed Clinical Trials with

Normally Distributed Outcomes

Whereas the previous two chapters have focused on the dynamic programming ap-

proach to the bandit problem for binary endpoints within a two-arm clinical trial,

this chapter considers the alternative Gittins index approach to the bandit problem

for normally distributed endpoints within a multi-armed trial. Furthermore, we now

consider the use of block randomisation rather than sequential randomisation.

6.1 Introduction

Response-adaptive randomisation (RAR) has been widely developed ever since the

idea was first suggested by Thompson (1933) (Hu and Rosenberger, 2006). The usual

motivation behind RAR is to achieve a patient benefit objective, e.g. to reduce ex-

posure to inferior treatments by skewing the allocation towards superior treatments

154
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based on observed responses. Incorporating such an objective into a trial design is

particularly important when the disease under study is rare — in which case a sub-

stantial proportion of patients in the population will be included in the trial — and

when an inferior treatment could result in a fatal outcome.

Despite the vast array of RAR procedures proposed in the literature, most of them:

(a) assume binary responses, (b) are defined for trials with only two treatments, and

(c) are myopic. However, many clinical trials have continuous primary outcomes and

include more than two (i.e. multiple) arms. Wason and Trippa (2014) report that 39%

of all multi-arm clinical trials published in four major medical journals during 2012 had

normally distributed primary outcomes. Although most RAR procedures for binary

responses are not easily extended to the continuous case, particularly those based

on urn models (Atkinson and Biswas, 2014), several RAR procedures for continuous

outcomes have been proposed (e.g. Zhu and Hu, 2009); a review of these can be found

in Atkinson and Biswas (2014, Chapter 4), and Biswas and Bhattacharya (2016).

Moreover, a “shortage of RAR methodology to handle cases with multiple treatments”

(Zhang et al., 2011) persists, despite the fact that RAR has the greatest potential

for efficiency and patient benefit gains in multi-armed trials (Berry, 2011), which

considerably limits its use in practice.

Furthermore, almost all procedures in the RAR literature (for binary or contin-

uous outcomes) use only past observations (allocations and responses) to influence

the decision for the next patient, without considering the number of patients remain-

ing to be treated (inside or outside the trial) or the information they could provide.

Such myopic strategies are not optimal in general (Berry and Fristedt, 1985). An

optimal approach, in terms of patient benefit, is based on the multi-armed bandit

problem (MABP) which considers all possible sequences of trial observations, and

the sequence that maximises patient response is selected. As a result, the traditional

dynamic programming approach used to solve the MABP is much more computation-
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ally intensive than myopic procedures, which is the predominant reason why the latter

have been favoured in the literature. Recent work proposing non-myopic bandit-based

RAR procedures for binary responses includes Villar et al. (2015b), Williamson et al.

(2017), and Villar and Rosenberger (2018). We will refer to non-myopic procedures

as forward-looking hereafter to be consistent with the terminology used in previous

papers.

Examples of forward-looking adaptive allocation rules for continuous endpoints

relevant to this chapter are Coad (1991b), Wang (1991a), Coad (1995) and Smith and

Villar (2018), all of which use the Gittins index for normally distributed outcomes.

However, the main limitation of these designs from a clinical trials perspective is their

deterministic nature. Randomisation is essential in order to remove various sources of

bias and it additionally provides a basis for inference (Rosenberger and Lachin, 2016).

Motivated by the above considerations, we propose a novel bandit-based allocation

rule that (a) applies to continuous outcomes, assumed to be normally distributed; (b)

applies when the outcome variance is assumed unknown; (c) is defined for multi-armed

trials; (d) is forward-looking and thus is orientated towards a patient benefit objective;

(e) is computationally feasible, and (f) is randomised. Additionally, we investigate

the impact on patient benefit of dichotomising a continuous endpoint, which is a

widely adopted approach in clinical research that has received considerable attention

in the literature (Royston et al., 2006). A common reason for this practice is to deal

with complete responses and missing data (due to death or dropout, for example)

since these naturally fall into success and failure categories, respectively. However,

dichotomisation comes at an efficiency cost (either a reduced power or larger sample

size) (Lavin, 1981; Wason et al., 2011).

Dealing with complete responses and missing data poses an extra challenge that is

exclusive to the implementation of RAR in a trial. The imputation method suggested

in Karrison et al. (2007), which is the only one that has shown moderate uptake in
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practice (Wason and Jaki, 2016), imputes unobserved responses using the distribution

of data collected at the end of the trial and therefore, the imputed data cannot be

used to perform any adaptations. In this chapter, we suggest a simple modification

of the procedure by Karrison et al. (2007) which permits the use of RAR to allocate

patients dynamically during the trial.

In Section 6.2, we present our forward-looking rule for continuous endpoints with

unknown variance using a simple example to illustrate its implementation. In Section

6.3, we report extensive comparative simulation studies in the context of a real phase

II cancer trial. We discuss the costs of dichotomisation in Section 6.4, and present our

method to accommodate missing data due to deaths, dropouts and complete responses

in Section 6.5. We draw conclusions in Section 6.6.

6.2 The Forward-Looking Gittins Index (FLGI) Rule

for Continuous Endpoints

We now define a RAR procedure for continuous endpoints, assumed to be normally

distributed, which augments the Forward-Looking Gittins Index (FLGI) rule pro-

posed in Villar et al. (2015b) for binary endpoints. Following the notation in that

paper, we consider a clinical trial that will test the effectiveness of K experimental

treatments against a control treatment on a sample of T patients, with K and T

fixed. Patients are labelled by t (t = 1, . . . , T ) and treatments by k (k = 0, . . . , K),

where k = 0 denotes the control. The response of patient t allocated to treatment k

is a random variable denoted by Yk,t, now assumed to follow a normal distribution,

Yk,t ∼ N(µk, σ
2
k). Without loss of generality, we also assume that a larger response is

desired and that σ2
k is unknown.

In order to derive our FLGI rule, we need to obtain the Gittins index for the MABP

associated with this trial design problem. A detailed explanation of the problem’s
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assumptions and its exact formulation appears in Appendix 6.7.1. The Gittins index

for a treatment with posterior mean ỹk,t and posterior standard deviation s̃k,t, after

having observed nk,t responses from treatment k, G(ỹk,t, s̃k,t, nk,t), can be written as

G(ỹk,t, s̃k,t, nk,t) = ỹk,t + s̃k,tG(0, 1, nk,t + 2, d), (6.2.1)

where G(0, 1, nk,t + 2, d) denotes the Gittins index value of a standardised bandit

problem with posterior mean 0, posterior standard deviation 1, nk,t observations, an

implicit (prior) sample size of 2 (refer to Appendices 6.7.1 and 6.7.3 for details), and

discount factor 0 ≤ d < 1. In this chapter, we choose d as recommended in Wang

(1991b) (Appendix 6.7.2 provides further details).

Notice that in this case we have two unknown parameters, µk and σ2
k, which we

assume have the hierarchical conjugate priors µk | σ2
k ∼ N

(
0,

σ2
k

2

)
and σ2

k ∼ IG
(

1
2
, 1

2

)
,

that is, the normal-inverse-gamma joint prior (µk, σ
2
k) ∼ NIG

(
0, 2, 1

2
, 1

2

)
when nk,t =

0. The choice of prior and its effect on performance measures is explored in Appendix

6.7.3. As in Smith and Villar (2018), we implement the solution in (6.2.1) at a very

low computational cost by calculating the values of G(0, 1, nk,t + 2, d) in advance1 and

interpolating from Table 8.3 in Gittins et al. (2011, p.263). Details on how to compute

these indices, first computed by Jones (1975), can be found in Gittins et al. (2011,

Chapters 7 and 8).

In order to derive a response-adaptive rule that will sequentially randomise the

next b patients among the K + 1 treatments at stage j (j = 1, . . . , J), given the data

up to and including block j−1, according to what the Gittins index rule would do, we

assume that patients are enrolled in groups, or blocks, of size b over J stages, so that

J × b = T . Using (6.2.1) and the Gittins index rule, which states that it is optimal to

allocate the treatment with the highest index value (breaking ties at random), we can

compute the FLGI probabilities for the case of a normally distributed endpoint (with

1These values are provided in Table 6.7.1.
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unknown variance) using equation (3) in Villar et al. (2015b). The main difference

here is that the optimal action probabilities in equation (3) of Villar et al. (2015b)

can no longer be matched to the probabilities of the (binary) outcome and must be

computed for different ranges of the continuous outcome.

Example

To illustrate the proposed rule, we derive the FLGI probabilities for the simplest possi-

ble case of a two-arm trial testing a control treatment (k = 0) against an experimental

treatment (k = 1) with a block of size two (b = 2).

For both k, we assume the following hierarchical (conjugate) prior structure at

the start of the trial: µk | σ2
k ∼ N

(
0,

σ2
k

2

)
and σ2

k ∼ IG
(

1
2
, 1

2

)
, so that (µk, σ

2
k) ∼

NIG
(
0, 2, 1

2
, 1

2

)
. Suppose further that both patients are randomly allocated to the

control treatment in the first block of the trial, resulting in responses y0,1 = 3.1 and

y0,2 = −0.4. Thus, the three relevant parameters required to obtain the corresponding

Gittins index for the control treatment are: the posterior mean ỹ0,2 = 0.675, the

posterior standard deviation s̃0,2 = 1.727, and the number of observations n0,2 = 2

(see equation (6.7.1) in Appendix 6.7.1). For the experimental treatment, the relevant

parameters are: ỹ1,2 = 0, s̃1,2 = 1, and n1,2 = 0. From equation (6.2.1), setting d =

0.995 and using Table 6.7.1 of Appendix 6.7.1, the Gittins index for the control and

experimental treatment, respectively, is G0(0.675, 1.727, 2) = 0.675 + 1.727×1.8126 =

3.805 and G1(0, 1, 0) = 0 + 1× 65.5848 = 65.585.

Figure 6.2.1 illustrates how the FLGI probabilities for block two, given the data

in block one, are computed via a probability tree. Given that the experimental treat-

ment has the unique maximum Gittins index, the first patient of the second block

is allocated to the experimental treatment with probability 1. When the second pa-

tient of the second block is to be allocated, we need to have observed the (random)

outcome of the first patient in this block, denoted by Y1,3, in order to update the
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indices and determine the optimal action. The updated prior parameters for the ex-

perimental treatment, as a function of the observed information on this treatment

and given the previous optimal action, are: Ỹ1,3 = Y1,3
n1,3+2

, S̃1,3 =
(

1
2

+
Y 2
1,3

n1,3+2

)1/2

, and

n1,3 = 1. Thus, the index for the experimental treatment can be expressed as a func-

tion of the random outcome from patient three as follows: G1(Ỹ1,3, S̃1,3, n1,3 = 1) =

Y1,3
3

+
(

1
2

+
Y 2
1,3

3

)1/2

G1(0, 1, 3, 0.995), with G1(0, 1, 3, 0.995) = 4.6049.

For the control treatment, we have no new information and so its index remains

unchanged at G0(Ỹ0,3, S̃0,3, n0,3) = 3.805. According to the Gittins index rule, it is op-

timal to allocate the control treatment to the second patient in the block if and only if

G1(Ỹ1,3, S̃1,3, n1,3) < G0(Ỹ0,3, S̃0,3, n0,3), which happens when −0.9508 < Y1,3 < 0.5862.

Since Y1,3 is a standard normal random variable, this happens with probability 0.5503,

that is, P(Y1,3 ≤ 0.5862) − P(Y1,3 ≤ −0.9508) = 0.5503. If Y1,3 < −0.9508 or

Y1,3 > 0.5862, which happens with probability 0.4497, then G1(Ỹ1,3, S̃1,3, n1,3) >

G0(Ỹ0,3, S̃0,3, n0,3) and the second patient in the second block is optimally allocated to

the experimental treatment. Notice that if Y1,3 = −0.9508 or Y1,3 = 0.5862, the index

values are equal and it is optimal to allocate any of the two treatments. In theory,

this would happen with probability 0 since Yk,t is a continuous variable. However, in

practice, if this were to happen, we would randomise with probability 0.5. Hence, the

normal FLGI procedure would randomise both patients in this block to receive the

experimental treatment with probability 1+(1×0.4497)
2

= 0.7249, and the control treat-

ment with probability 0+(1×0.5503)
2

= 0.2751. Continuing this example for larger block

sizes using Monte Carlo simulation, the allocation probabilities to the experimental

and control arm, respectively, are (0.6565, 0.3435) for b = 3, (0.5151, 0.4849) for b = 4,

(0.4370, 0.5630) for b = 5, and (0.3051, 0.6949) for b = 10.



CHAPTER 6. RAR WITH NORMALLY DISTRIBUTED OUTCOMES 161

aGI1,3 = 1

G1 (0,1,0) = 65.585

G0(0.675, 1.727, 2) = 3.805

aGI0,4 = 1

G1

(
Y1,3

3
,

√
1
2

+
Y 2
1,3

3
, 1

)
< 3.805

G0 (0.675,1.727,2) = 3.805

−0.9508 < Y1,3 < 0.5862
w.p. 0.5503

aGI1,4 = 1

G1
(

Y1,3

3
,

√
1
2

+
Y2

1,3

3
,1

)
> 3.805

G0(0.675, 1.727, 2) = 3.805

Y1,3
< −0.9508 ∪ Y1,3

> 0.5862

w.p. 0.4497

Figure 6.2.1: The FLGI rule and a probability tree of all trial histories using the
Gittins index rule when K + 1 = 2, b = 2, d = 0.995, the outcome Yk,t is normally
distributed with unknown mean and variance, and parameters (ỹk,2, s̃k,2, nk,2) are given
by (0.675, 1.727, 2) for k = 0 and (0, 1, 0) for k = 1. Bold text indicates the allocated
treatment under the Gittins index rule {aGIk,t}. Note that the FLGI probabilities in
this case are 0.7249 and 0.2751 for the experimental and control arm, respectively.
(For simplicity of the illustration, we have omitted the branch corresponding to the
cases Y1,3 = −0.9508 or Y1,3 = 0.5862 since, theoretically, this would happen with
probability 0).

6.3 Simulation Study

6.3.1 Alternative Designs and Performance Measures

Next, we will report simulations that compare the FLGI for a normally distributed

endpoint (with unknown variance) against the following existing randomisation pro-

cedures:

(1) Equal Randomisation2 (ER), where each patient is randomly allocated to one

2Note that this is referred to as fixed randomisation in previous chapters. The two terms are
taken to be synonymous throughout this thesis.
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of the K + 1 arms with equal probability, 1/(K + 1). ER is predominant in practice

(implemented, for example, by permuted-block randomisation), thus it will be used

as a reference to compare all designs.

(2) Modified Zhang and Rosenberger (MZR), introduced by Zhang and Rosen-

berger (2006) and later modified by Biswas and Bhattacharya (2009) to allow for

negative mean responses. The rule aims at minimising the total of inverse mean

responses, that is, n0,T/µ0 + n1,T/µ1. This design results in the following optimal

allocation proportion ρ∗:

ρ∗ =


c if {µ0, µ1 > 0 and ρc < c} or

{
µ0, µ1 < 0, σ0

σ1
>
√

µ1
µ0

}
or {µ0 < 0, µ1 > 0} ,

ρc if {µ0, µ1 > 0, c ≤ ρc ≤ 1− c} ,

1− c if {µ0, µ1 > 0, ρc > 1− c} or
{
µ0, µ1 < 0, σ0

σ1
<
√

µ1
µ0

}
or {µ0 > 0, µ1 < 0} ,

where ρc = σ0
√
µ0

/(
σ0
√
µ0 + σ1

√
µ1

)
and c ∈ [0, 1/2]. The initial parameter esti-

mates are obtained by allocating the first nER patients using ER. After that, estimates

of the unknown parameters µk and σk are sequentially updated based on the current

data available.

(3) Constrained Gittins Index (GI) Rule is a procedure based on Gittins indices

proposed by Wang (1991a) and further studied by Coad (1991b, 1995). However,

unlike the FLGI, Constrained GI is not implemented in terms of probabilities, and

hence is not randomised. This is a practical limitation and explains why Constrained

GI has been neglected as a comparator within the RAR literature. The rule is defined

as follows: if nc0,t < n1,t, allocate the next patient to arm 0; if nc1,t < n0,t, allocate

the next patient to arm 1; else, allocate the next patient to the treatment with the

largest Gittins index (randomising if they are equal). The parameter c ≥ 1 is a tuning

parameter; c = 1 corresponds to ER, and the Gittins index is eventually recovered as

c→∞. Following Wang (1991a), we fix c = 2 in our simulations.

(4) Thompson Sampling (TS) randomises patients to arms based on their posterior
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probability of being the “best” arm. Specifically, we consider a version of Thompson

sampling suggested by Thall and Wathen (2007), where the probability of allocating

treatment k to patients in block j is computed as

P
(
maxi µi = µk | x̃(j−1)b

)c∑K
k=0P

(
maxi µi = µk | x̃(j−1)b

)c ,
where x̃t = (ỹ0,t, s̃0,t, n0,t, . . . , ỹK,t, s̃K,t, nK,t) and c = (j−1)b/2T is a tuning parameter

that recovers ER when c = 0 and TS when c = 1.

(5) Trippa et al. (2012) Procedure (TP) randomises patients similarly to TS,

but also protects allocation to the control arm. We have implemented TP as in Villar

et al. (2015b)3.

(6) Controlled FLGI (CFLGI) is a variant of the FLGI design proposed in Villar

et al. (2015b) which, similarly to TP, protects the allocation to the control arm by

ensuring that the corresponding allocation probability is always at least 1/(K + 1).

(7) Gwise et al. (2011) propose a design for comparing K + 1 arms with het-

eroscedasticity. After an initial ER phase, patient t + 1 is allocated to arm k with

probability
σ̂2
k,t/nk,t

σ̂2
0,t/n0,t + · · ·+ σ̂2

K,t/nK,t
,

where σ̂2
k,t is the estimated sample variance of the first nk,t responses on arm k.

Note that MZR and Constrained GI are fully sequential and will only be imple-

mented in the two-armed case (see Coad (1995) for the multi-arm version of Con-

strained GI). TP and CFLGI apply only to the multi-armed case. For all of the rules

which require specification of a joint prior distribution on µk and σ2
k, we take the

same approach as with the FLGI. For the index-based designs, a discount factor of

d = 0.995 is used, and the allocation probabilities defined in the FLGI designs, TS

and TP are computed using their empirical estimates from 100 Monte Carlo repli-

3Refer to Section 2.1.3 for a description of TP.
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cates. Additionally, we implement the doubly adaptive biased coin design by Hu and

Zhang (2004)4 with the target allocation proportions taken to be the corresponding

FLGI probabilities for b = T under the null and alternative hypotheses, H0 and H1,

defined below.

To evaluate the performance of all designs, we consider patient benefit and the

usual inferential measures. The former includes: (a) the expected proportion of pa-

tients in the trial allocated to the superior treatment, E(p∗), and (b) the percentage

change in expected total outcome for rule r (ETOr) relative to the theoretical expected

total outcome for ER (ETOER), computed as 100× (ETOr − ETOER)/ETOER and

denoted in the tables of results by RelETO%. For the inferential measures, we focus

on standard operating characteristics, including: power, 1 − β; type I error rate, α;

and bias in the maximum likelihood estimator of the treatment effect, E(∆̂ − ∆),

with ∆ = µk − µ0 and ∆̂ = (µ̂k − µ̂0). For the multi-armed case, we report both the

marginal power (i.e. power to reject H0,k∗ , where k∗ is the best arm) and the bias

for the best experimental arm under H1. Note that under H0, we take k∗ to be the

control arm.

We consider the following hypotheses: H0 : µ0 = µk ∀ k versus the one-sided

alternatives, H1,k : µ0 < µk for some k > 0 considered the best arm. We will use the

test statistic Tk =
(
Y k − Y 0

)/√ σ̂2
k

nk,T
+

σ̂2
0

n0,T
for k = 1, . . . , K, where Y k and σ̂2

k are

the sample mean and sample variance, respectively, of arm k at the end of the trial.

In the multi-armed case, we consider the joint distribution of T1, . . . , TK and use a

critical value, t1−α, to achieve a family-wise type I error rate (FWER) close to the

specified α, where FWER is defined as the probability of obtaining at least one false

positive, or type I error, within the family of null hypotheses H0.

4Refer to (2.1.1) for details.
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6.3.2 A Two-Armed Trial

To motivate this scenario, we use the example in Karrison et al. (2007) of a two-

armed phase II cancer trial, in which the primary endpoint is the ratio of tumour

size at the time of follow-up to that at baseline for patient t under treatment k, that

is, the change in tumour size, denoted by Ck,t. After a log-transformation, Ck,t is

continuous and approximately normally distributed, as shown by Lavin (1981). In

keeping with our assumption that a larger outcome is desirable, we add a minus sign

to re-express the endpoint as a measure of tumour reduction. Under the assumption

that Y0,t = − log(C0,t) ∼ N(0.155, 0.642) and Y1,t = − log(C1,t) ∼ N(0.529, 0.642),

the total sample size required to detect this treatment difference with approximately

80% power at the α = 0.05 significance level and assuming complete observations is

T = 72.

Results

Table 6.3.1 displays the results from 50, 000 replications of the trial when we assume

unknown variance. As expected, under H0 all the designs are equal in terms of patient

benefit (RelETO% ≈ 0 and E(p∗) ≈ 0.50). The main difference between designs under

the null is the variability of the allocations, represented by the standard deviations

(s.d.) of p∗, with ER and FLGI (for b = 1) being the least and most variable,

respectively. As the block size increases, changes in the allocation probabilities are

based on more data and the FLGI becomes less variable. The index-based procedures

tend to be more variable because they aim at maximising patient response. For

example, the Constrained GI also has a large variability which is comparable to that

of the FLGI. For the MZR design, the variability of the allocations decreases as the

size of the initial ER period, nER, increases. The variability of the FLGI is also

markedly reduced when implemented using Hu and Zhang (2004), labelled as FLGI-

HZ in Table 6.3.1. In terms of the bias of the treatment effect estimator, all are (on
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average) unbiased under H0. Note that we have used adjusted t-critical values to

control type I error rates for all designs following the approach used in Smith and

Villar (2018). The (unreported) type I error inflation incurred for the FLGI when

using the usual t0.95 critical value is approximately 11% for b = 1 and it decreases as

the block size grows, as expected. A similar level and pattern of inflation occurs for

TS.

The results under H1, in which we are testing for superiority of arm 1 (the ex-

perimental arm), show more contrasts amongst designs. First, we focus on the FLGI

design and the effect of varying the block size on the power versus patient benefit

trade-off. When b = 1, the FLGI design is statistically identical to the fully sequen-

tial Gittins index rule and so favours patient response. At the other extreme, when

b = T , the FLGI design is equivalent to ER and therefore favours power. Thus, consis-

tent with the findings for the binary case, Table 6.3.1 shows that as b increases under

H1, the patient benefit measures (and corresponding standard deviations) decrease,

whilst the power increases (at a faster rate) which illustrates the natural tension be-

tween these two conflicting goals. This relationship is depicted visually in Figure 6.5.1

for T = 128.

In terms of the patient benefit measures, the index-based designs (namely the

FLGI and Constrained GI) perform the best out of all the designs considered. Relative

to ER, for a moderate block size of b = 9, the FLGI allocates approximately 34% more

patients to the superior treatment (equivalent to 25 patients). Moreover, the expected

total tumour size reduction is just over 37% greater than that obtained when using

ER. Even for a large block size of b = 36, the FLGI allocates approximately 21%

more patients to arm 1 and achieves an expected total tumour size reduction 23%

larger than ER. All other block sizes for the FLGI have a total tumour size reduction

at least 30% greater than ER, on average. The Constrained GI is shown to perform

similarly to the FLGI when b = 9. TS has a total tumour size reduction rate of at
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least 20% greater than ER for small b, on average, whereas MZR falls below this for

all nER.

As mentioned above, the cost of these patient benefit gains is a severe reduction

in the power compared to that of ER. However, this is ameliorated as b increases or

by implementing the FLGI probabilities using Hu and Zhang (2004). The ER design

attains an unbiased treatment effect estimator, as expected, with the largest relative

bias exhibited by the FLGI design when b = 1 (i.e. the GI design). This makes

sense because this is the design with the biggest imbalance in favour of arm 1. As

a result, µ̂0 will be substantially underestimated giving rise to an overestimated ∆̂

(and positive bias of treatment effect). As b increases, and consequently the number

of observations on arm 0 increases, the bias (and associated standard deviations) of

the treatment effect estimator decreases.

These results emphasise the very important point that, in a two-armed setting,

none of the designs are uniformly better than the others for every performance mea-

sure since each design is tailored towards a different competing objective. This makes

direct comparisons between such designs infeasible and motivates our main interest

in the multi-armed case.

Table 6.3.1 also shows the results attained by the FLGI rule when assuming the cor-

rect variance in both arms (see FLGI-known). As expected, FLGI-known marginally

outperforms the FLGI with unknown variance in terms of patient benefit (and re-

duces the power) due to the additional uncertainty present in the latter. However, in

practice, this is unrealistic since the true variance of the outcome is seldom known at

the start of a trial. Therefore, in Tables 6.3.2 and 6.3.3, we illustrate the effect of as-

suming an incorrect variance (on one, or both, of the arms) on the performance of the

FLGI relative to when assuming an unknown variance. Although misspecifying the

variance does not always have a negative impact on the results, and the performance

may be comparable to that when assuming an unknown variance (as in Scenarios



CHAPTER 6. RAR WITH NORMALLY DISTRIBUTED OUTCOMES 168

(i)–(iv)), it is important to be aware that it can sometimes lead to a considerable

loss in patient benefit. This is evident in Scenario (vii) of Table 6.3.3, for example,

where 6.4% fewer patients are allocated to the superior treatment (for b = 1) as a

consequence of underestimating σ2
1. As such, the robustness and flexibility attained

by the FLGI with unknown variance makes this design more suited to practice.

µ0 = µ1 = 0.155 µ0 = 0.155, µ1 = 0.529

Design t1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.)

ER b = 1 1.654 0.0518 0.4999 (0.06) -0.19 (5.45) -0.0005 (0.15) 0.7884 0.5005 (0.06) 0.20 (5.66) -0.0013 (0.15)

FLGI-known b = 1 1.991 0.0526 0.4997 (0.33) -0.06 (5.42) -0.0004 (0.49) 0.2290 0.8823 (0.16) 41.69 (7.01) 0.2167 (0.45)

b = 2 1.969 0.0505 0.5002 (0.32) 0.34 (5.42) -0.0003 (0.44) 0.2701 0.8777 (0.16) 41.27 (6.85) 0.1870 (0.41)

b = 6 1.911 0.0481 0.4987 (0.29) -0.03 (5.45) 0.0010 (0.34) 0.3599 0.8605 (0.14) 39.38 (6.59) 0.1147 (0.30)

b = 9 1.864 0.0492 0.4983 (0.28) -0.15 (5.43) 0.0008 (0.30) 0.4235 0.8483 (0.13) 38.14 (6.53) 0.0843 (0.26)

b = 18 1.766 0.0513 0.5017 (0.24) 0.14 (5.44) -0.0010 (0.23) 0.5653 0.8074 (0.12) 33.72 (6.30) 0.0389 (0.20)

b = 36 1.682 0.0495 0.5000 (0.19) 0.26 (5.45) 0.0001 (0.17) 0.7124 0.7139 (0.09) 23.25 (5.98) 0.0087 (0.17)

FLGI b = 1 2.1820 0.0525 0.5013 (0.29) -0.15 (5.43) 0.0013 (0.29) 0.3289 0.8712 (0.12) 40.62 (6.39) 0.0955 (0.27)

b = 2 2.159 0.0497 0.5016 (0.28) 0.21 (5.45) 0.0014 (0.28) 0.3432 0.8651 (0.12) 39.95 (6.41) 0.0902 (0.26)

b = 6 2.118 0.0477 0.4985 (0.27) 0.18 (5.42) -0.0008 (0.26) 0.3790 0.8521 (0.12) 38.48 (6.36) 0.0801 (0.25)

b = 9 2.045 0.0514 0.5011 (0.26) -0.01 (5.41) 0.0019 (0.25) 0.4236 0.8412 (0.12) 37.13 (6.36) 0.0698 (0.24)

b = 18 1.898 0.0517 0.5008 (0.24) -0.04 (5.42) 0.0005 (0.22) 0.5277 0.8047 (0.12) 33.30 (6.23) 0.0356 (0.20)

b = 36 1.733 0.0505 0.4997 (0.18) 0.01 (5.43) -0.0009 (0.18) 0.6973 0.7128 (0.09) 23.23 (6.00) 0.0097 (0.17)

FLGI-HZ (γ = 2) b = 1 1.658 0.0509 0.5000 (0.05) 0.12 (5.43) 0.0008 (0.15) 0.6510 0.7784 (0.04) 30.46 (5.51) 0.0001 (0.18)

b = 2 1.660 0.0509 0.5003 (0.05) -0.14 (5.44) 0.0004 (0.15) 0.6499 0.7786 (0.04) 30.61 (5.54) -0.0007 (0.18)

b = 6 1.688 0.0487 0.5001 (0.05) 0.16 (5.42) 0.0000 (0.15) 0.6417 0.7781 (0.04) 30.40 (5.54) -0.0001 (0.18)

b = 9 1.661 0.0529 0.4994 (0.05) 0.43 (5.43) 0.0017 (0.15) 0.6501 0.7777 (0.04) 30.27 (5.52) -0.0004 (0.18)

b = 18 1.684 0.0490 0.4999 (0.05) 0.11 (5.41) 0.0003 (0.15) 0.6570 0.7644 (0.04) 28.99 (5.54) -0.0011 (0.18)

b = 36 1.665 0.0516 0.5000 (0.05) 0.10 (5.41) 0.0017 (0.15) 0.7779 0.5865 (0.05) 9.57 (5.64) 0.0003 (0.15)

TS b = 1 1.751 0.0496 0.4999 (0.11) -0.1108 (5.44) -0.0001 (0.17) 0.7425 0.6961 (0.11) 21.35 (6.14) 0.0302 (0.19)

b = 2 1.739 0.0497 0.4997 (0.11) -0.0431 (5.41) -0.0016 (0.17) 0.7479 0.6934 (0.11) 21.27 (6.11) 0.0290 (0.19)

b = 6 1.741 0.0513 0.4994 (0.11) 0.3098 (5.44) -0.0001 (0.17) 0.7489 0.6825 (0.10) 19.88 (6.14) 0.0257 (0.18)

b = 9 1.729 0.0499 0.5000 (0.10) 0.1311 (5.42) 0.0001 (0.17) 0.7547 0.6747 (0.10) 18.95 (6.13) 0.0229 (0.18)

b = 18 1.722 0.0494 0.5008 (0.10) 0.4446 (5.42) 0.0013 (0.16) 0.7602 0.6509 (0.10) 16.40 (6.11) 0.0184 (0.17)

b = 36 1.697 0.0507 0.4999 (0.08) 0.4332 (5.41) 0.0013 (0.16) 0.7726 0.6040 (0.10) 11.45 (6.07) 0.0095 (0.16)

CGI (c = 2) 1.887 0.0496 0.4871 (0.28) 0.19 (5.42) 0.0004 (0.24) 0.4298 0.8294 (0.11) 37.59 (6.19) 0.0340 (0.21)

MZR nER = 2 1.794 0.0516 0.5005 (0.19) 0.2794 (5.41) 0.0002 (0.19) 0.7471 0.6569 (0.12) 17.15 (5.76) 0.0229 (0.17)

nER = 6 1.780 0.0507 0.4998 (0.17) 0.3487 (5.43) 0.0001 (0.18) 0.7632 0.6414 (0.10) 15.47 (5.49) 0.0202 (0.16)

nER = 11 1.751 0.0508 0.5001 (0.14) -0.2534 (5.41) 0.0007 (0.17) 0.7755 0.6173 (0.08) 12.86 (5.29) 0.0155 (0.16)

Gwise nER = 2 1.877 0.0495 0.4997 (0.13) -0.08 (5.43) 0.0012 (0.18) 0.7193 0.4999 (0.13) -0.11 (6.47) -0.0013 (0.18)

nER = 6 1.697 0.0482 0.5003 (0.06) -0.08 (5.45) -0.0000 (0.15) 0.7833 0.5005 (0.06) 0.02 (5.67) -0.0013 (0.15)

nER = 11 1.705 0.0492 0.4999 (0.06) 0.07 (5.41) 0.0007 (0.15) 0.7837 0.5000 (0.06) -0.20 (5.66) 0.0000 (0.15)

Table 6.3.1: Comparison of performance measures for a two-armed trial using different
designs when the variance is assumed unknown (with the exception of FLGI-known)
and T = 72, averaged over 50,000 trial replications. Note that the true variance of
the response is σ2

k = 0.642 for k ∈ {0, 1}.
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µ0 = µ1 = 0.155 µ0 = 0.155, µ1 = 0.529

b t1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.)

(i) FLGI-known with σ2
0 = σ2

1 = 1
2
× 0.642

1 2.001 0.0509 0.4983 (0.27) -0.04 (3.84) 0.0013 (0.26) 0.4722 0.9215 (0.07) 46.01 (4.34) 0.1430 (0.29)

2 1.977 0.0505 0.5010 (0.26) 0.17 (3.83) -0.0007 (0.24) 0.5422 0.9142 (0.07) 45.22 (4.32) 0.1209 (0.26)

6 1.925 0.0525 0.4986 (0.24) 0.12 (3.85) 0.0009 (0.20) 0.6642 0.8952 (0.07) 43.29 (4.33) 0.0771 (0.21)

9 1.887 0.0518 0.5002 (0.23) 0.07 (3.82) -0.0004 (0.18) 0.7241 0.8814 (0.07) 41.77 (4.30) 0.0545 (0.18)

18 1.798 0.0509 0.4999 (0.21) 0.14 (3.83) 0.0010 (0.15) 0.8406 0.8370 (0.07) 36.90 (4.29) 0.0224 (0.14)

36 1.698 0.0500 0.5006 (0.16) -0.03 (3.83) -0.0005 (0.12) 0.9341 0.7331 (0.06) 25.53 (4.19) 0.0050 (0.12)

(ii) FLGI with σ2
0 = σ2

1 = 1
2
× 0.642

1 2.280 0.0502 0.5014 (0.30) -0.04 (3.84) 0.0017 (0.21) 0.4301 0.9177 (0.07) 45.60 (4.33) 0.0641 (0.20)

2 2.209 0.0484 0.4987 (0.29) 0.04 (3.83) -0.0013 (0.20) 0.4713 0.9131 (0.07) 45.15 (4.32) 0.0602 (0.20)

6 2.132 0.0491 0.4987 (0.28) 0.01 (3.81) -0.0017 (0.19) 0.5520 0.9008 (0.07) 43.88 (4.35) 0.0537 (0.19)

9 2.080 0.0505 0.4991 (0.27) 0.04 (3.84) -0.0007 (0.18) 0.5958 0.8894 (0.07) 42.55 (4.33) 0.0427 (0.18)

18 1.897 0.0516 0.5004 (0.24) 0.04 (3.84) -0.0004 (0.16) 0.7604 0.8466 (0.07) 37.95 (4.29) 0.0186 (0.15)

36 1.751 0.0501 0.5000 (0.19) -0.22 (3.83) -0.0002 (0.12) 0.9110 0.7401 (0.06) 26.33 (4.18) 0.0035 (0.12)

(iii) FLGI-known with σ2
0 = σ2

1 = 2× 0.642

1 1.940 0.0505 0.4998 (0.37) -0.04 (7.69) 0.0024 (0.81) 0.1517 0.8106 (0.27) 34.25 (10.54) 0.2656 (0.74)

2 1.924 0.0481 0.4997 (0.36) 0.13 (7.64) -0.0015 (0.72) 0.1719 0.8116 (0.26) 34.29 (10.29) 0.2279 (0.66)

6 1.865 0.0484 0.4999 (0.33) -0.28 (7.70) -0.0008 (0.54) 0.2233 0.8018 (0.23) 33.06 (9.85) 0.1441 (0.48)

9 1.790 0.0529 0.4998 (0.31) -0.21 (7.69) -0.0009 (0.45) 0.2730 0.7935 (0.21) 32.21 (9.55) 0.1068 (0.40)

18 1.747 0.0514 0.4998 (0.27) 0.49 (7.70) 0.0006 (0.33) 0.3454 0.7593 (0.18) 28.34 (9.10) 0.0487 (0.30)

36 1.677 0.0497 0.5003 (0.20) -0.03 (7.66) 0.0050 (0.25) 0.4532 0.6837 (0.14) 20.27 (8.53) 0.0108 (0.24)

(iv) FLGI with σ2
0 = σ2

1 = 2× 0.642

1 2.386 0.0518 0.5013 (0.32) -0.04 (7.69) 0.0009 (0.45) 0.1944 0.8117 (0.21) 34.37 (9.55) 0.1326 (0.41)

2 2.323 0.0501 0.4975 (0.31) -0.21 (7.64) -0.0037 (0.43) 0.2047 0.8088 (0.21) 33.57 (9.50) 0.1292 (0.4)

6 2.255 0.0502 0.5008 (0.29) 0.05 (7.68) 0.0000 (0.40) 0.2184 0.7945 (0.20) 32.22 (9.37) 0.1117 (0.38)

9 2.138 0.0525 0.5004 (0.28) -0.07 (7.69) 0.0016 (0.38) 0.2413 0.7827 (0.19) 31.01 (9.27) 0.0936 (0.35)

18 1.888 0.0514 0.4974 (0.25) -0.02 (7.63) -0.0028 (0.32) 0.3346 0.7511 (0.17) 27.18 (8.97) 0.0517 (0.29)

36 1.753 0.0480 0.5002 (0.19) 0.13 (7.69) -0.0012 (0.25) 0.4470 0.6748 (0.13) 19.11 (8.48) 0.0145 (0.24)

Table 6.3.2: Comparing the performance measures of FLGI-known, when the vari-
ance is incorrectly assumed to be 0.642, against those obtained from FLGI when the
variance is assumed unknown (but with an initial estimate, s̃2

k,0, of 0.642). The true
variance of the response is actually half or double 0.642, as indicated. These results
are averaged over 50, 000 replications for a two-armed trial of size T = 72.
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µ0 = µ1 = 0.155 µ0 = 0.155, µ1 = 0.529

b t1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.)

(v) FLGI-known with σ2
0 = 0.642, σ2

1 = 1
2
× 0.642

1 1.9900 0.0502 0.4284 (0.30) 0.03 (4.61) 0.1030 (0.38) 0.1828 0.9203 (0.09) 45.84 (4.32) 0.2522 (0.41)

2 1.9710 0.0487 0.4358 (0.29) -0.35 (4.60) 0.0902 (0.35) 0.2200 0.9102 (0.09) 44.85 (4.32) 0.2038 (0.37)

6 1.9170 0.0487 0.4587 (0.27) 0.26 (4.63) 0.0583 (0.28) 0.3399 0.8857 (0.09) 42.06 (4.35) 0.1271 (0.28)

9 1.8730 0.0508 0.4666 (0.26) -0.08 (4.65) 0.0477 (0.24) 0.4222 0.8703 (0.09) 40.49 (4.36) 0.0952 (0.24)

18 1.7890 0.0532 0.4836 (0.23) 0.09 (4.68) 0.0280 (0.19) 0.5893 0.8240 (0.09) 35.37 (4.43) 0.0427 (0.18)

36 1.7060 0.0533 0.4992 (0.18) 0.07 (4.70) 0.0131 (0.15) 0.7697 0.7237 (0.08) 24.42 (4.56) 0.0117 (0.15)

(vi) FLGI with σ2
0 = 0.642, σ2

1 = 1
2
× 0.642

1 2.425 0.0489 0.4822 (0.31) -0.07 (4.72) 0.0341 (0.26) 0.2655 0.8897 (0.11) 42.51 (4.58) 0.1104 (0.26)

2 2.331 0.0524 0.4789 (0.30) -0.07 (4.69) 0.0323 (0.25) 0.2969 0.8833 (0.11) 41.94 (4.59) 0.1044 (0.25)

6 2.266 0.0485 0.4752 (0.28) 0.05 (4.74) 0.0282 (0.24) 0.3431 0.8674 (0.11) 40.08 (4.62) 0.0927 (0.24)

9 2.185 0.0510 0.4722 (0.28) -0.37 (4.72) 0.0263 (0.23) 0.3861 0.8562 (0.11) 38.81 (4.62) 0.0813 (0.23)

18 1.977 0.0489 0.4721 (0.25) 0.06 (4.75) 0.0197 (0.19) 0.5261 0.8158 (0.10) 34.69 (4.60) 0.0418 (0.19)

36 1.778 0.0511 0.4786 (0.19) -0.04 (4.72) 0.0120 (0.15) 0.7429 0.7226 (0.09) 24.28 (4.60) 0.0111 (0.15)

(vii) FLGI-known with σ2
0 = 0.642, σ2

1 = 2× 0.642

1 1.981 0.0489 0.5892 (0.34) 0.30 (6.45) -0.1878 (0.65) 0.2669 0.7882 (0.29) 31.44 (11.25) 0.0885 (0.64)

2 1.941 0.0524 0.5747 (0.34) 0.33 (6.51) -0.1584 (0.59) 0.3005 0.7958 (0.27) 32.39 (10.90) 0.0819 (0.55)

6 1.855 0.0519 0.5517 (0.31) 0.01 (6.53) -0.1035 (0.45) 0.3741 0.8034 (0.23) 33.30 (10.18) 0.0586 (0.40)

9 1.821 0.0482 0.5422 (0.30) -0.03 (6.56) -0.0806 (0.38) 0.4119 0.7995 (0.21) 32.71 (9.84) 0.0454 (0.33)

18 1.735 0.0489 0.5194 (0.26) -0.34 (6.59) -0.0469 (0.28) 0.5105 0.7758 (0.17) 30.16 (9.15) 0.0197 (0.24)

36 1.665 0.0475 0.5007 (0.20) -0.04 (6.63) -0.0225 (0.22) 0.6098 0.6982 (0.12) 21.74 (8.20) 0.0004 (0.20)

(viii) FLGI with σ2
0 = 0.642, σ2

1 = 2× 0.642

1 2.238 0.0517 0.5204 (0.32) -0.05 (6.70) -0.0480 (0.38) 0.2806 0.8522 (0.19) 38.78 (9.50) 0.0774 (0.34)

2 2.207 0.0484 0.5249 (0.31) 0.24 (6.65) -0.0433 (0.37) 0.2885 0.8507 (0.18) 38.63 (9.40) 0.0710 (0.32)

6 2.095 0.0509 0.5290 (0.29) -0.06 (6.69) -0.0377 (0.34) 0.3353 0.8405 (0.17) 37.31 (9.28) 0.0637 (0.30)

9 2.039 0.0491 0.5297 (0.28) -0.07 (6.71) -0.0367 (0.33) 0.3554 0.8299 (0.16) 36.31 (9.14) 0.0501 (0.28)

18 1.839 0.0497 0.5284 (0.25) 0.05 (6.72) -0.0296 (0.27) 0.4708 0.7943 (0.14) 32.01 (8.71) 0.0220 (0.23)

36 1.700 0.0489 0.5222 (0.19) 0.15 (6.70) -0.0182 (0.21) 0.6050 0.7017 (0.11) 21.95 (8.05) 0.0030 (0.20)

Table 6.3.3: Continuation of Table 6.3.2, except now the true variances are heteroge-
neous, as indicated.

6.3.3 A Multi-Armed Trial

We now use the phase II cancer trial setting described in Karrison et al. (2007) as a

case study. The primary endpoint is again the change in tumour size from baseline

to eight weeks. Patients were randomly assigned to one of three treatment arms: 150



CHAPTER 6. RAR WITH NORMALLY DISTRIBUTED OUTCOMES 171

mg of erlotinib plus placebo; 150 mg of erlotinib plus 200 mg of sorafenib; or 150 mg

of erlotinib plus 400 mg of sorafenib. We will refer to these as the control, low dose

and high dose, respectively.

Based on data from previous trials, the log ratio of tumour sizes is assumed to have

a mean of 0.05 for the control (k = 0), −0.07 for the low dose (k = 1) and −0.13 for the

high dose (k = 2), with a common standard deviation of 0.346. To be consistent with

our earlier assumption that larger responses are desirable, we instead consider tumour

reduction. Therefore, we assume that Y0,t ∼ N(−0.05, 0.3462), Y1,t ∼ N(0.07, 0.3462)

and Y2,t ∼ N(0.13, 0.3462). We simulate a trial of size T = 120, which should have at

least 80% power using a one-sided test at α = 0.10 when no correction for multiplicity

is considered. In our simulations, we will ensure a one-sided test at the α = 0.10

FWER level, and since we adjust for multiplicity, the power will fall slightly below

80%, illustrating the effect of correcting for multiplicity on power.

Results

Under the null, the only relevant difference amongst designs is the variability of result-

ing allocations, with the rules performing the best in terms of patient benefit being the

most variable. Results under the alternative hypothesis are illustrated in Figure 6.3.1

and provided in full (for both H0 and H1) in Table 6.3.4. Figure 6.3.1 shows a star

plot summarising the key features of each design (for blocks 1, 15, 40, and 60) where

the most desirable values lie towards the outer edge of the star plot with the least

favourable values towards the centre. We see that ER performs very well with respect

to power, average bias and variability, but poorly with respect to patient benefit for

all block sizes, whilst in contrast the FLGI design performs poorly with respect to

power, average bias and variability but the best with respect to patient benefit. The

CFLGI and TS design have values lying near to the outer edge of the star plot for all

measures, thus showing that they perform well with respect to all of the performance
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measures. Although CFLGI and TS have similar performances, they are not directly

comparable as they attain different compromises between the competing objectives.

Rather than having a flat probability protection for the control arm during the trial,

the definition of the CFLGI rule could be adjusted in a similar way to TS and TP,

which we expect would result in an advantage over TS in terms of patient benefit,

especially for smaller trials with several arms.
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Figure 6.3.1: The trade-offs between the expected proportion of patients allocated to
the superior arm, E(p∗), power, average absolute bias of the treatment effect estimator
and variability of patient allocations for the different designs, including normal FLGI
and normal FLGI with missing data (MD), for block sizes b = (1, 15, 40, 60) in a
three-armed trial of size T = 120 (assuming unknown variance).
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µ0 = µ1 = µ2 = −0.05 µ0 = −0.05, µ1 = 0.07, µ2 = 0.13

Design t1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.)

ER b = 1 1.595 0.0997 0.3332 (0.04) -0.28 (3.79) -0.0007 (0.08) 0.7608 0.3333 (0.04) -0.07 (3.87) -0.0002 (0.08)

FLGI b = 1 1.731 0.0992 0.3331 (0.20) 0.03 (3.77) 0.0006 (0.12) 0.4936 0.6122 (0.23) 88.13 (4.34) 0.0212 (0.13)

b = 2 1.718 0.0994 0.3336 (0.20) -0.09 (3.79) 0.0002 (0.12) 0.5121 0.6087 (0.22) 87.48 (4.35) 0.0209 (0.13)

b = 4 1.737 0.0979 0.3343 (0.19) 0.10 (3.79) 0.0001 (0.12) 0.5100 0.6024 (0.22) 86.04 (4.35) 0.0203 (0.13)

b = 8 1.741 0.0954 0.3323 (0.19) -0.47 (3.79) -0.0003 (0.11) 0.5235 0.5938 (0.21) 83.52 (4.35) 0.0198 (0.12)

b = 15 1.709 0.1018 0.3337 (0.18) -0.03 (3.79) 0.0001 (0.11) 0.5582 0.5824 (0.21) 80.94 (4.34) 0.0191 (0.12)

b = 20 1.725 0.1001 0.3342 (0.18) 0.00 (3.78) 0.0004 (0.11) 0.5608 0.5716 (0.20) 77.82 (4.32) 0.0166 (0.11)

b = 40 1.662 0.1009 0.3342 (0.17) -0.35 (3.80) -0.0004 (0.10) 0.6100 0.5296 (0.18) 66.48 (4.26) 0.0047 (0.10)

b = 60 1.591 0.1009 0.3337 (0.15) -0.05 (3.80) 0.0004 (0.09) 0.6697 0.4835 (0.16) 51.91 (4.16) -0.0013 (0.09)

FLGI-HZ (γ = 2) b = 1 1.603 0.0972 0.3333 (0.04) 0.37 (3.79) -0.0001 (0.08) 0.6157 0.5137 (0.05) 67.11 (3.84) -0.0001 (0.10)

b = 2 1.592 0.0996 0.3334 (0.04) -0.41 (3.80) -0.0002 (0.08) 0.6161 0.5137 (0.05) 67.19 (3.85) -0.0005 (0.10)

b = 4 1.587 0.1009 0.3332 (0.04) 0.08 (3.79) 0.0000 (0.08) 0.6209 0.5134 (0.05) 66.96 (3.84) 0.0002 (0.10)

b = 8 1.600 0.0979 0.3331 (0.04) 0.79 (3.79) -0.0002 (0.08) 0.6162 0.5133 (0.05) 67.03 (3.84) -0.0004 (0.10)

b = 15 1.585 0.0994 0.3332 (0.04) -0.18 (3.80) -0.0006 (0.08) 0.6207 0.5131 (0.05) 66.86 (3.85) -0.0002 (0.10)

b = 20 1.605 0.0991 0.3334 (0.04) -0.32 (3.80) -0.0001 (0.08) 0.6187 0.5115 (0.05) 66.74 (3.87) -0.0001 (0.10)

b = 40 1.587 0.1014 0.3334 (0.04) 0.29 (3.80) -0.0002 (0.08) 0.6839 0.4827 (0.06) 53.2 (3.93) 0.0003 (0.09)

b = 60 1.598 0.1000 0.3335 (0.05) 0.25 (3.79) 0.0004 (0.08) 0.7665 0.4240 (0.05) 19.34 (4.08) 0.0000 (0.08)

CFLGI b = 1 1.530 0.1012 0.2894 (0.16) -0.01 (3.80) -0.0236 (0.10) 0.7254 0.4780 (0.18) 30.41 (4.12) -0.0171 (0.09)

b = 2 1.533 0.1009 0.2922 (0.16) 0.11 (3.78) -0.0223 (0.10) 0.7272 0.4756 (0.17) 30.28 (4.12) -0.0164 (0.09)

b = 4 1.520 0.1017 0.2949 (0.16) -0.06 (3.79) -0.0209 (0.10) 0.7324 0.4734 (0.17) 30.20 (4.09) -0.0157 (0.09)

b = 8 1.522 0.1027 0.2960 (0.15) -0.55 (3.80) -0.0203 (0.10) 0.7366 0.4685 (0.17) 29.11 (4.07) -0.0144 (0.09)

b = 15 1.530 0.0988 0.2976 (0.15) 0.04 (3.80) -0.0190 (0.10) 0.7361 0.4615 (0.16) 27.68 (4.09) -0.0133 (0.09)

b = 20 1.534 0.1020 0.2981 (0.15) -0.53 (3.80) -0.0180 (0.09) 0.7328 0.4554 (0.16) 26.79 (4.07) -0.0130 (0.09)

b = 40 1.538 0.1006 0.3029 (0.14) 0.20 (3.78) -0.0134 (0.09) 0.7425 0.4331 (0.14) 20.98 (4.03) -0.0105 (0.08)

b = 60 1.540 0.1005 0.3077 (0.13) -0.26 (3.79) -0.0082 (0.08) 0.7552 0.4094 (0.12) 15.80 (4.02) -0.0070 (0.08)

TP b = 1 1.582 0.1009 0.3116 (0.09) 0.11 (3.78) -0.0127 (0.09) 0.7822 0.3403 (0.06) -5.75 (3.82) -0.0019 (0.08)

b = 2 1.580 0.0991 0.3119 (0.09) 0.08 (3.80) -0.0128 (0.09) 0.7791 0.3402 (0.05) -6.68 (3.82) -0.0028 (0.08)

b = 4 1.571 0.0997 0.3121 (0.09) 0.05 (3.79) -0.0128 (0.09) 0.7824 0.3400 (0.05) -5.57 (3.81) -0.0019 (0.08)

b = 8 1.579 0.0991 0.3130 (0.09) -0.33 (3.78) -0.0121 (0.09) 0.7820 0.3393 (0.05) -6.07 (3.83) -0.0016 (0.08)

b = 15 1.570 0.1009 0.3148 (0.08) 0.45 (3.78) -0.0107 (0.09) 0.7793 0.3381 (0.05) -6.31 (3.84) -0.0023 (0.08)

b = 20 1.576 0.0982 0.3146 (0.08) -0.34 (3.79) -0.0098 (0.08) 0.7781 0.3370 (0.05) -6.02 (3.82) -0.0020 (0.08)

b = 40 1.567 0.1042 0.3174 (0.08) -0.11 (3.80) -0.0069 (0.08) 0.7792 0.3331 (0.05) -6.68 (3.91) -0.0013 (0.08)

b = 60 1.574 0.1021 0.3131 (0.07) -0.35 (3.78) -0.0051 (0.08) 0.7738 0.3214 (0.06) -11.58 (3.95) -0.0011 (0.08)

TS b = 1 1.629 0.1024 0.3331 (0.09) 0.09 (3.78) 0.0002 (0.09) 0.7313 0.4589 (0.10) 47.23 (4.08) 0.0141 (0.10)

b = 2 1.651 0.0985 0.3340 (0.09) -0.10 (3.78) 0.0009 (0.09) 0.7223 0.4574 (0.10) 46.67 (4.07) 0.0132 (0.10)

b = 4 1.641 0.0986 0.3337 (0.09) 0.18 (3.80) 0.0006 (0.09) 0.7267 0.4557 (0.10) 46.10 (4.08) 0.0138 (0.10)

b = 8 1.620 0.1028 0.3336 (0.08) 0.10 (3.79) 0.0000 (0.09) 0.7366 0.4513 (0.10) 44.76 (4.07) 0.0124 (0.09)

b = 15 1.626 0.1012 0.3327 (0.08) 0.38 (3.78) -0.0005 (0.09) 0.7349 0.4443 (0.09) 43.38 (4.07) 0.0121 (0.09)

b = 20 1.632 0.1006 0.3330 (0.08) 0.01 (3.78) -0.0001 (0.09) 0.7344 0.4390 (0.09) 41.59 (4.06) 0.0110 (0.09)

b = 40 1.635 0.0980 0.3329 (0.07) 0.00 (3.79) -0.0003 (0.08) 0.7410 0.4191 (0.08) 34.82 (4.05) 0.0093 (0.09)

b = 60 1.609 0.1016 0.3328 (0.07) 0.03 (3.78) -0.0006 (0.08) 0.7478 0.3979 (0.08) 27.29 (4.02) 0.0055 (0.09)

Gwise nER = 2 1.778 0.0998 0.3343 (0.08) 0.50 (3.82) 0.0003 (0.09) 0.7101 0.3336 (0.08) 0.12 (4.12) 0.0002 (0.09)

nER = 4 1.620 0.1011 0.3334 (0.05) -0.32 (3.78) 0.0001 (0.08) 0.7599 0.3328 (0.05) -0.13 (3.89) -0.0006 (0.08)

nER = 8 1.618 0.1010 0.3332 (0.04) -0.09 (3.78) -0.0001 (0.08) 0.7627 0.3332 (0.04) -0.01 (3.9) -0.0003 (0.08)

Table 6.3.4: Comparison of performance measures for a three-armed trial using dif-
ferent designs when the variance is assumed unknown and T = 120, averaged over
50,000 trial replications. Note that the true variance of the response is σ2

k = 0.3462

for k ∈ {0, 1, 2}.
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6.4 Dichotomisation: Patient Benefit and Efficiency

Cost

Phase II cancer trials, such as the ones considered above, are traditionally conducted

as single arm studies using a binary response rate as the primary endpoint, which is

formed by splitting the underlying continuous data (change in tumour size) into two

groups (success or failure of a treatment), that is, dichotomising. This dichotomisation

is often based on the Response Evaluation Criteria in Solid Tumors (Eisenhauer et al.,

2009) which categorises the change in tumour size and number of lesions into four

levels: complete response, partial response, stable disease, and progressive disease. A

treatment is considered a success if patients experience either a partial or complete

response (i.e. at least a 30% reduction in the total diameter of target lesions), and a

failure otherwise. If new lesions appear, or non-target lesions grow beyond a certain

percentage, this is also classed as a treatment failure.

Dichotomising continuous data is a widely adopted approach in clinical research.

However, this comes at the cost of losing power as well as raising issues such as where

exactly the dichotomisation cutpoint should be. For further implications, see Cohen

(1983) and Maccallum et al. (2002). Within the literature, there is a strong focus

on the loss of efficiency associated with dichotomising a continuous variable, but no

mention of the cost to patients in the trial. Therefore, we will use the same two-

armed example as in Section 6.3.2 to compare the performance, in terms of patient

benefit measures, of the continuous FLGI to the binary FLGI proposed in Villar

et al. (2015b). However, since the binary FLGI compares response rates, we increase

the total sample size from T = 72 to 128, as this is the size required to detect an

improvement from 20% to 40% with 80% power using a one-sided test at the α = 0.05

level; a 77% increase on that required for the continuous case.

Figure 6.5.1 shows the efficiency costs of dichotomising a continuous endpoint. A
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trial of size 128 achieves almost 100% power to detect the target treatment difference

when using a continuous endpoint, as opposed to 80% power when using a binary

one. Moreover, Figure 6.5.1 also illustrates that there is an important patient benefit

cost of using a binary endpoint instead of a continuous one when using RAR. In

particular, the normal FLGI (all versions) has not only a higher power level, but also

a considerably higher expected proportion of patients on the best arm for every block

size in a trial of size 128.

6.5 Imputing Complete Responses and Dropouts

The patient benefit cost associated with dichotomising requires an important practi-

cal consideration to be taken into account when interpreting it. To implement any

response-adaptive design in practice, particularly in cancer trials like those used in

this chapter, we need an online imputation method to account for patients who (a)

die or dropout of the trial before the follow-up time, or (b) have a complete response

(since this causes the log ratio to be undefined). Two approaches have been proposed

to impute these cases in Karrison et al. (2007) and Jaki et al. (2013), a review of

which is provided by Wason and Jaki (2016).

So far, we have assumed that all patients generate an observable response, which

is clearly not realistic. Whereas deaths/dropouts and complete responses are easily

imputed in the binary case, there is no obvious way of translating these outcomes

into continuous variables. Building upon the solution in Karrison et al. (2007), where

the best and worst possible outcomes are used to impute complete responses and

deaths/dropouts, respectively, we instead randomise from the upper tail of the (theo-

retical) distribution under H1 if we observe a complete response, and from the lower

tail of the null distribution to account for deaths or dropouts, regardless of which

treatment the patient received. Thus, this approach allows for a response-adaptive
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algorithm to be used by computing the missing values online as the trial progresses.

Furthermore, choosing the missing values randomly, as opposed to using the same

values every time, is perhaps a better reflection of reality or, at the very least, a

reflection of the distributional assumptions made to determine the size of the study

based on power considerations. Alternatively, we could estimate the best and worst

possible outcomes based on the interim data observed after each block. However, in

practice, if the deaths, dropouts or complete responses occur early on in the trial,

there would be too few, or possibly no, observations available to accurately represent

these values.

Figure 6.5.1 shows the results for the normal FLGI when we implement our online

imputation method assuming that we observe a 4% rate of deaths or dropouts and

a 1% rate of complete responses. This is illustrated under the assumption of both

a known and unknown variance, labelled as FLGI-known with missing data (MD)

and FLGI with MD, respectively. These rates are consistent with values reported

in Karrison et al. (2007). Figure 6.5.1 shows that, as expected, this missing data

assumption decreases both the efficiency and patient benefit advantages, relative to

the FLGI with complete observations, for both the known and unknown variance

cases. Nevertheless, the imputed continuous FLGI procedure continues to greatly

outperform the binary FLGI with respect to both criteria. Figure 6.3.1 suggests that

similar conclusions also apply for the multi-armed missing data case (see FLGI with

MD).
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Figure 6.5.1: The trade-off between the expected proportion of patients allocated to
the superior arm, E(p∗), and power for the: Binary ER, Normal ER, Binary FLGI,
Normal FLGI and Normal FLGI with Missing Data (MD) imputed in an online fashion
for block sizes b = (1, 2, 4, 8, 16, 32, 64, 128) in a two-armed trial of size T = 128. The
latter two designs are shown when assuming both an unknown variance and known
(correct) variance (dashed line and labelled as FLGI-known).

6.6 Discussion

The RAR literature contains relatively few procedures for a continuous endpoint as-

sumed to be normally distributed with unknown variance, fewer still that are defined

for the multi-armed case and none that are forward-looking. We propose the first

forward-looking RAR algorithm applicable to this case which is orientated towards

an optimality criterion with respect to patient benefit.
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In this chapter, we have shown that using a continuous endpoint instead of di-

chotomising can offer efficiency, but also patient benefit advantages, when combined

with RAR. An implication of not dichotomising could be a lack of robustness to de-

partures from the assumed response distribution. For example, if assuming responses

are normally distributed but the observed data is non-normal, how much of an impact

would this have on the performance measures of the proposed design, and would the

aforementioned advantages over the dichotomisation approach persist? This forms an

area of further work.

Implementing a RAR procedure, such as the FLGI, in the context of phase II

cancer trials requires dealing with missing data from patients in an online fashion. The

näıve imputation method suggested in this work, based on the method by Karrison

et al. (2007), shows that there are still important benefits even if a low rate of missing

observations is anticipated. Further work is needed to develop imputation methods

that can be used in combination with RAR.

An important advantage of our proposed method is that it can be implemented

without assuming a fixed, known, and common variance. In fact, the FLGI with

unknown variance can learn about the variance simultaneously as it learns about

the treatment means, and update the randomisation probabilities accordingly. Addi-

tionally, the method can incorporate covariates in the way suggested by Villar and

Rosenberger (2018).

The motivation of our algorithm is in the setting of clinical trials, but it applies

to sequential allocation problems more generally. Future research could consider the

issue of estimation following the sequential tests used in combination with these novel

designs, similar to work in Coad (1991a, 1994).
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6.7 Appendix

6.7.1 The MABP and FLGI for Normally Distributed End-

points

In this Appendix, we provide a more detailed description of the MABP for normally

distributed endpoints, its solution by the Gittins index (GI) and an additional example

of the Forward-Looking Gittins Index (FLGI) probabilities for normally distributed

endpoints with a known variance.

Recall that the MABP in this case involves a multi-armed clinical trial that will

test the effectiveness of K experimental treatments against a control treatment on

a sample of T patients, with K and T fixed and known in advance. Patients are

labelled by t (t = 1, . . . , T ) and treatments by k (k = 0, . . . , K), where k = 0 denotes

the control. The response of patient t allocated to arm k is a random variable denoted

by Yk,t and assumed to follow a normal distribution Yk,t ∼ N(µk, σ
2
k). Without loss of

generality, we also assume that a larger response is preferable and that σ2
k is known.

In order to derive the FLGI rule, we first need to obtain the GI for a normally

distributed variable and the MABP associated with this trial design problem. For

this purpose, we assume the following. (i) Each unknown parameter µk has a prior

distribution πk,0 at the start of the trial (before any observation has been made)

which we take to be the normal prior N
(
µ0
k,

σ2
k

n0
k

)
. Note that the form of the prior

when both µk and σ2
k are unknown is provided below. (ii) Patients enter the trial

one-by-one and responses are observed immediately after treatment. We will remove

these assumptions when we formulate the FLGI rule. (iii) Only one treatment can be

allocated per patient and we let ark,t be a binary indicator variable denoting whether

patient t + 1 is assigned to treatment k for patient allocation rule r or not, given

the information available on all treatments. (iv) Given the conjugacy of the prior and

normally distributed responses, prior distributions are converted into normal posterior
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distributions for each µk via Bayes’ Theorem. After treating patient t, if nk,t responses

from treatment k have been observed (each denoted by yk,i with i ∈ {1, . . . , nk,t} and

nk,t ≤ t), then the posterior distribution of µk at time t is πk,t(µk | yk,1, . . . , yk,nk,t) ∼

N
(
nk,tyk,t+n

0
kµ

0
k

nk,t+n
0
k

,
σ2
k

nk,t+n
0
k

)
by Bayes’ Theorem, where yk,t = 1

nk,t

∑nk,t
i=1 yk,i is the sample

mean and n0
k is the implicit sample size from the prior information (Spiegelhalter et al.,

2004, p. 62). The posterior distribution, πk,t, can be identified by the parameters ỹk,t

(posterior mean) and n0
k + nk,t, which we subsequently refer to as the state (of the

bandit) (Gittins et al., 2011). Note that when the variance is unknown, an additional

parameter, s̃2
k,t, denoting the posterior variance of patient t on arm k, is required

to identify πk,t and in this case, we need to specify a joint prior distribution for

µk and σ2
k at the start of the trial. We take this to be the normal-inverse-gamma

distribution (where the variance follows an inverse-gamma distribution and the mean,

conditional on the variance, has a normal distribution). Consequently, the marginal

prior distribution for µk has a Student’s t-distribution. When we observe an outcome

yk,t+1 from patient t+ 1 on arm k, the state (ỹk,t, s̃k,t, n
0
k + nk,t) is updated as follows

(
(n0

k + nk,t)ỹk,t + yk,t+1

n0
k + nk,t + 1

,

(
s̃2
k,t(n

0
k + nk,t − 1)

n0
k + nk,t

+
(yk,t+1 − ỹk,t)2

n0
k + nk,t + 1

) 1
2

, n0
k + nk,t + 1

)
.

(6.7.1)

The MABP is to find a patient allocation rule r that attains the maximum expected

patient response given the initial information about the treatments before the start

of the trial. Mathematically, this is expressed as

max
r∈R

Er
[(

T−1∑
t=0

K∑
k=0

dtE[Yk,t | xk,t]ark,t

) ∣∣∣∣ x̃0

]
, (6.7.2)

where xk,t = (yk,t, nk,t, µ
0
k, n

0
k), x̃0 = {xk,0}Kk=0 is the initial joint state with all the

prior parameters, R is the set of admissible allocation rules, Er[·] denotes expectation

under allocation rule r, and 0 ≤ d < 1 is a discount factor. In MABPs, rewards are
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geometrically discounted so that an infinite horizon can be considered, i.e. patient t’s

response yields a reward of dtYk,t for some k. In practice, a solution that depends on

d, such as the GI, can be adapted to solve an undiscounted problem with a specific

finite horizon, as explained in Edwards et al. (2017, Definition 6.6).

The exact solution to (6.7.2), obtained via dynamic programming, uses a backward

induction algorithm which becomes computationally infeasible very quickly as T and

K grow. The GI solution, first introduced by Gittins and Jones (1979), eliminates

this computational infeasibility by ensuring that the optimal solution to (6.7.2) can be

obtained by simply allocating every patient to the arm with the highest GI. Similarly

to equation (6.2.1) for the unknown variance case, the GIs, G(ỹk,t, σk, nk,t), for the

known variance case in (6.7.2) can be expressed as

G(ỹk,t, σk, nk,t) = ỹk,t + σkG(0, 1, n0
k + nk,t, d), (6.7.3)

where G(0, 1, n0
k +nk,t, d) denotes the GI value of a standardised bandit problem with

posterior mean 0, standard deviation 1, implicit sample size n0
k, nk,t observations and

discount factor d (Gittins et al., 2011, Theorem 7.13). These were first computed

in Jones (1975). Table 6.7.1 shows indices corresponding to the unknown variance

case, as used in Sections 6.2–6.5, based on those presented in Gittins et al. (2011,

Table 8.3).

We implement the solution in (6.7.3) at a very low computational cost by calcu-

lating the values of G(0, 1, n0
k + nk,t, d) in advance and interpolating from the tables

printed in Gittins et al. (2011, pp. 261–262). Details on how to compute these indices

using value iteration can be found in Gittins et al. (2011, Chapters 7 and 8). Using

(6.7.3) and the GI rule, we can compute the FLGI probabilities for normally dis-

tributed endpoints (with known variance) using equation (3) in Villar et al. (2015b).

We now assume that instead of enrolling patients one-by-one, patients are enrolled

in groups of size b over J stages, so that J × b = T . Our response-adaptive rule will
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sequentially randomise the next b patients among the K + 1 treatments at stage j

(j = 1, . . . , J) given the data up to and including block j − 1 according to what the

GI rule would do.

Example

We now illustrate the rule’s implementation using an example for the case of known

variances. We calculate the FLGI probabilities using the simplest possible case of a

two-arm trial testing a control treatment (k = 0) against an experimental treatment

(k = 1) with a block of size two (b = 2) and a known, common variance of σ2
k =

σ2 = 1. We assume a prior of µk ∼ N(0, 1) so that the initial state, (ỹk,0, n
0
k), is

(0, 1) for both k = {0, 1}. Suppose further that both patients are allocated to the

control treatment in the first block of the trial resulting in responses y0,1 = 3.1 and

y0,2 = −0.4. The updated state after the first observation becomes (ỹ0,1, n
0
0 + n0,1) =

(1.55, 2) and after the second observation becomes (ỹ0,2, n
0
0 + n0,2) = (0−0.4+3.1

3
, 3) =

(0.9, 3). Consequently, for the second block, the prior parameters for the control and

experimental treatment respectively are (0.9, 3) and (0, 1), i.e. µ0 ∼ N(0.9, 1
3
) and

µ1 ∼ N(0, 1).

From equation (6.7.3), setting d = 0.995 and using Gittins et al. (2011, Table 8.1)5,

the GI for the control treatment is G0(0.9, 1, 2) = 0.9 + 1 × G0(0, 1, 3, 0.995) = 0.9 +

0.20137

3(1−0.995)
1
2

= 1.8493. For the experimental treatment, we only have the information

available from the initial state (since no observations have yet been observed on this

arm). Thus, the corresponding GI for this arm is G1(0, 1, 0) = 0 + 0.12852

(1−0.995)
1
2

= 1.8175.

Given that the control treatment has the maximum GI, the first patient of the

second block (i.e. patient 3) is allocated to the control treatment with probability 1

since there is only one optimal action possible at this point. If we denote the ran-

dom outcome of this patient by Y0,3, then the updated state for the control treatment

5Note that Gittins et al. (2011, Table 8.1) provides values of (n0
k+nk,t)(1−d)

1
2G(0, 1, n0

k+nk,t, d).
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is (Ỹ0,3, n
0
0 + n0,3) =

(
0−0.4+3.1+Y0,3

4
, 4
)

. Thus, the corresponding index for the con-

trol treatment can be expressed as a function of the random outcome from patient

three as follows: G0(Ỹ0,3, 1, 3) = Y0,3+2.7

4
+ G0(0, 1, 4, 0.995) = Y0,3

4
+ 1.4669, where

G0(0, 1, 4, 0.995) = 0.22398

4(1−0.995)
1
2

= 0.79189.

For the experimental treatment, we have no new information and so the corre-

sponding index remains unchanged at 1.8175. According to the GI rule, it will be

optimal to allocate the control treatment to the second patient of the second block if

and only if G0(Ỹ0,3, 1, 3) > G1(0, 1, 0) = 1.8175, that is, if Y0,3 > 1.4024. Since Y0,3 ∼

N(0.9, 1), we expect this to happen with probability P(Y0,3 > 1.4024) = 0.3077. If

Y0,3 < 1.4024, which happens with probability 0.6923, then G0(Ỹ0,3, 1, 3) < G1(0, 1, 0)

and the second patient of the second block is optimally allocated to the experimental

treatment. Notice that if Y0,3 = 1.4024, then there is a tie in the index values and

it is equally optimal to allocate any of the two treatments. Although theoretically

we expect this to happen with probability 0 (since we are dealing with a continuous

distribution), in practice this is possible and if it were to happen, we would simply

randomise with probability 0.5. Hence, the probability of a patient receiving either

the control or experimental treatment when using the normal FLGI procedure in this

block is 1+1×P(Y0,3>1.4024)

2
= 0.6538 and 0+1×P(Y0,3<1.4024)

2
= 0.3462, respectively. Figure

6.7.1 illustrates how the FLGI probabilities for block two, given the data in block one,

are computed via a probability tree.
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aGI0,3 = 1
G0(0.9,1,2) = 1.8493
G1(0, 1, 0) = 1.8175

aGI1,4 = 1

G0(Ỹ0,3, 1, 3) < 1.8175
G1(0,1,0) = 1.8175

Y0,3 < 1.4024
w.p. 0.6923

aGI0,4 = 1

G0(Ỹ0,3,1,3) > 1.8175
G1(0, 1, 0) = 1.8175Y0,3

> 1.4024

w.p. 0.3077

Figure 6.7.1: The FLGI rule and a probability tree of all trial histories using the GI
rule when K + 1 = 2, b = 2, d = 0.995 and the state at the start of the second block,
(ỹk,2, n

0
k + nk,2), is (0.9, 3) for arm k = 0 and (0, 1) for arm k = 1. Bold text indicates

the allocated treatment under the GI rule {aGIk,t}. (Note that for simplicity of the
illustration we have omitted the branch corresponding to the case when Y0,3 = 1.4024
since P(Y0,3 = 1.4024) = 0).
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d 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.995

n0
k + nk,t

2 0.23984 1.04741 1.55545 2.81630 5.16921 10.14092 39.33433 65.58475

3 0.15620 0.21476 0.29804 0.43425 0.73571 1.16561 3.10200 4.60490

4 0.09486 0.13001 0.17914 0.25664 0.41606 0.61934 1.34279 1.81263

5 0.07058 0.09673 0.13323 0.19047 0.30608 0.44776 0.90524 1.17299

6 0.05679 0.07791 0.10742 0.15369 0.24666 0.35900 0.70542 0.89632

7 0.04779 0.06564 0.09061 0.12983 0.20866 0.30352 0.59010 0.74336

8 0.04135 0.05685 0.07858 0.11278 0.18165 0.26451 0.51233 0.64259

9 0.03649 0.05021 0.06948 0.09988 0.16128 0.23525 0.45557 0.57012

10 0.03268 0.04500 0.06234 0.08974 0.14527 0.21234 0.41187 0.51498

20 0.01611 0.02228 0.03106 0.04515 0.07444 0.11090 0.22299 0.28120

30 0.01072 0.01485 0.02076 0.03032 0.05049 0.07615 0.15786 0.20137

40 0.00804 0.01115 0.01560 0.02285 0.03829 0.05821 0.12347 0.15903

50 0.00643 0.00892 0.01250 0.01834 0.03086 0.04719 0.10189 0.13229

60 0.00536 0.00744 0.01043 0.01532 0.02586 0.03971 0.08697 0.11368

70 0.00459 0.00638 0.00895 0.01316 0.02225 0.03429 0.07599 0.09991

80 0.00402 0.00558 0.00784 0.01153 0.01953 0.03018 0.06755 0.08927

90 0.00357 0.00496 0.00697 0.01026 0.01741 0.02696 0.06084 0.08077

100 0.00321 0.00447 0.00627 0.00924 0.01570 0.02436 0.05538 0.07381

200 0.00161 0.00224 0.00314 0.00464 0.00793 0.01242 0.02944 0.04024

300 0.00107 0.00149 0.00210 0.00310 0.00531 0.00834 0.02015 0.02790

400 0.00080 0.00112 0.00157 0.00233 0.00399 0.00628 0.01534 0.02142

500 0.00064 0.00090 0.00126 0.00186 0.00319 0.00504 0.01239 0.01740

600 0.00054 0.00075 0.00105 0.00155 0.00266 0.00421 0.01040 0.01466

700 0.00046 0.00064 0.00090 0.00133 0.00228 0.00361 0.00896 0.01268

800 0.00040 0.00056 0.00079 0.00116 0.00200 0.00316 0.00787 0.01117

900 0.00036 0.00050 0.00070 0.00104 0.00178 0.00281 0.00702 0.00999

1000 0.00032 0.00045 0.00063 0.00093 0.00160 0.00253 0.00634 0.00903

Table 6.7.1: Gittins indices for a normal reward process with unknown variance where
d and n0

k + nk,t denote the discount factor and total amount of information, respec-
tively. These values are based on those reported in Gittins et al. (2011, Table 8.3).
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6.7.2 Effect of Discount Factor on FLGI Performance

A practical consideration for our design is the choice of discount factor, d. We recom-

mend choosing d to be close to that obtained when applying the formula suggested

by Wang (1991b), namely, d = 1−1/T , where T is the trial size. Here, we discuss the

implications of not following this recommendation on the performance of the FLGI

(with known variance) by presenting results corresponding to d = 0, 0.5 and 0.99 in

Table 6.7.2. Note that the results for d = 0.995 (the discount factor used throughout)

are shown in (i) of Table 6.7.3. When d = 0, the design is analogous to a fully myopic

policy which treats every patient as if they are the last one in the trial. In contrast,

the closer d is to 1, the greater the influence that potential responses from future

participants have on allocation decisions made earlier in the trial, that is, the more

“forward looking” the design will be. Thus, we expect the patient benefit measures

to increase with d (up to a limit determined by the actual trial size), as illustrated in

Table 6.7.2. In particular, Table 6.7.2 shows that as d increases from 0 to 0.995 for

b = 1, E(p∗) increases by 0.164, which is equivalent to 11 more patients receiving the

superior arm, and the relative ETO increases by 17.77%. As a result of the greater

imbalance between the treatment arms for larger d, the bias of the treatment effect

estimator (under H1) is also increased.

Interestingly, for smaller d, we observe that the patient benefit measures increase

(up to around b = 9) followed by a decrease. This is due to an interaction between

the discount factor and block size, whereby the increase in block size counteracts

the myopic effect of a small d by forcing learning and consequently improving patient

benefit. However, as the block size continues to grow, the effect of the design becoming

more balanced supersedes the effect of the discount factor, causing the patient benefit

to now reduce. Therefore, when choosing d, it is important to consider which block

size will be used.

In terms of the power of the design, it increases somewhat with the size of d as
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illustrated by Table 6.7.2 which shows that the power exhibited for the FLGI when

d = 0 and b = 1 is 0.213 compared to 0.229 when d = 0.995. This makes sense because

increasing d from a value that is much smaller than its recommendation for a fixed T

reduces the myopic nature of the rule, meaning it will explore more of the arms (thus

increasing power) and make better choices (also increasing patient benefit).

The discount factor also affects the variability of the allocations, which decreases

considerably with the value of d under both H0 and H1. For example, Table 6.7.2

shows that under H1, the standard deviation (s.d.) of p∗ when d = 0 and b = 1 is

0.43, which is 2.7 times larger than the corresponding s.d. when d = 0.995. Given that

allocations under index-based designs (and response-adaptive designs more generally)

can already be very variable, it does not make sense to choose a discount factor which

exacerbates this even further.

A further practical drawback of using a discount factor that is too small is that

it will increase the likelihood of the design allocating all patients to only one of the

treatments (due to an under exploration). The number of times this occurred out of

the 50,000 trial realisations is reported in the “Discarded” column of Table 6.7.2. For

example, when d = 0 and b = 1, more than half of the 50,000 trial realisations under

H1 (namely 25,621) resulted in this extreme allocation. Therefore, for the purpose

of calculating the test statistic (and hence power) and bias values in these cases, we

randomly sampled an observation from the distribution corresponding to the missing

arm instead. In contrast, when d = 0.995, this problem did not occur in any of the

50,000 trial realisations (and similarly when d = 0.99).

Note that all of the aforementioned differences are most pronounced for smaller

block sizes (which is when the design is most adaptive) since as the block size grows

and the FLGI design becomes more balanced, the respective performance measures

eventually converge, irrespective of the value of d.

Overall, provided that d is near to the recommendation suggested by Wang (1991b),
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the performance of the FLGI will be similar — as illustrated by the results for d = 0.99

(Table 6.7.2) and d = 0.995 (Table 6.7.3(i)). However, choosing d to be too small in

relation to T can alter the behaviour of the design significantly. Moreover, if we

were to use this design in a rare disease context, where we envisage it would be best

suited, d should be chosen to be large enough so that we account for all of the patient

outcomes in the adaptations and hence ensure patient benefit for all.

µ0 = µ1 = 0.155 µ0 = 0.155, µ1 = 0.529

b z1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) Discarded 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) Discarded

d = 0 (Myopic)

1 1.827 0.050 0.498 (0.48) -0.14 (5.45) 0.00 (0.69) 14707 0.213 0.718 (0.43) 23.92 (12.49) 0.08 (0.68) 25621

2 1.829 0.049 0.497 (0.46) 0.02 (5.42) 0.00 (0.60) 7970 0.222 0.761 (0.39) 28.52 (11.53) 0.06 (0.60) 13789

4 1.799 0.050 0.501 (0.43) 0.12 (5.49) -0.00 (0.50) 2211 0.266 0.810 (0.32) 33.87 (10.13) 0.05 (0.48) 3889

6 1.776 0.050 0.499 (0.41) -0.24 (5.44) -0.00 (0.42) 598 0.312 0.832 (0.27) 36.44 (9.03) 0.05 (0.39) 1093

9 1.752 0.050 0.501 (0.38) 0.05 (5.41) -0.00 (0.33) 94 0.383 0.840 (0.22) 37.12 (8.06) 0.04 (0.31) 174

12 1.720 0.052 0.502 (0.35) 0.46 (5.43) -0.00 (0.29) 15 0.448 0.837 (0.19) 36.87 (7.44) 0.03 (0.26) 28

18 1.708 0.050 0.499 (0.31) -0.07 (5.45) 0.00 (0.24) 2 0.533 0.814 (0.15) 34.39 (6.80) 0.02 (0.22) 3

36 1.676 0.050 0.499 (0.21) 0.11 (5.40) 0.00 (0.18) 0 0.694 0.720 (0.10) 24.23 (6.05) 0.00 (0.17) 0

d = 0.5

1 1.819 0.050 0.497 (0.46) 0.02 (5.42) 0.00 (0.66) 4894 0.228 0.772 (0.39) 29.64 (11.38) 0.07 (0.66) 18359

2 1.818 0.049 0.501 (0.44) 0.03 (5.45) -0.00 (0.58) 2637 0.243 0.804 (0.35) 33.38 (10.54) 0.07 (0.58) 9769

4 1.770 0.054 0.497 (0.42) -0.15 (5.47) 0.00 (0.49) 669 0.287 0.832 (0.29) 36.20 (9.45) 0.07 (0.46) 2696

6 1.765 0.052 0.499 (0.40) -0.25 (5.45) -0.00 (0.41) 192 0.329 0.844 (0.25) 37.72 (8.60) 0.06 (0.38) 763

9 1.757 0.049 0.501 (0.37) 0.14 (5.45) -0.00 (0.33) 24 0.391 0.844 (0.21) 37.41 (7.80) 0.05 (0.30) 101

12 1.749 0.048 0.500 (0.34) -0.05 (5.39) -0.00 (0.29) 3 0.441 0.838 (0.18) 37.13 (7.26) 0.04 (0.26) 25

18 1.707 0.050 0.503 (0.30) -0.17 (5.43) -0.00 (0.24) 0 0.543 0.816 (0.15) 34.62 (6.70) 0.03 (0.22) 0

36 1.677 0.049 0.501 (0.21) -0.16 (5.43) -0.00 (0.18) 0 0.693 0.720 (0.10) 24.04 (6.09) 0.01 (0.17) 0

d = 0.99

1 1.981 0.050 0.498 (0.35) 0.08 (5.43) 0.00 (0.53) 0 0.209 0.882 (0.19) 41.94 (7.38) 0.22 (0.47) 0

2 1.944 0.051 0.502 (0.34) 0.08 (5.44) -0.00 (0.47) 0 0.255 0.879 (0.17) 41.44 (7.20) 0.19 (0.42) 0

4 1.907 0.051 0.501 (0.32) -0.31 (5.45) -0.00 (0.41) 0 0.313 0.871 (0.16) 40.62 (6.91) 0.14 (0.36) 0

6 1.885 0.049 0.500 (0.31) -0.20 (5.41) -0.00 (0.36) 0 0.349 0.865 (0.15) 39.95 (6.73) 0.11 (0.31) 0

9 1.850 0.049 0.501 (0.29) 0.36 (5.44) -0.00 (0.31) 0 0.409 0.851 (0.14) 38.38 (6.64) 0.08 (0.26) 0

12 1.816 0.051 0.499 (0.28) 0.16 (5.42) 0.00 (0.27) 0 0.467 0.839 (0.13) 37.11 (6.44) 0.06 (0.23) 0

18 1.758 0.050 0.499 (0.25) -0.10 (5.44) 0.00 (0.23) 0 0.556 0.811 (0.12) 33.89 (6.31) 0.04 (0.20) 0

36 1.684 0.051 0.499 (0.19) -0.03 (5.44) 0.00 (0.18) 0 0.710 0.716 (0.10) 23.45 (6.02) 0.01 (0.17) 0

Table 6.7.2: The effect of altering the discount factor, d, on the performance of the
FLGI for a two-armed trial when σ2

k = 0.642 is assumed known and T = 72, averaged
over 50,000 trial replications. NB The “Discarded” column reports the number of
trials that resulted in an extreme allocation with all patients being allocated to only
one arm.
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6.7.3 Effect of Prior Information on FLGI Performance

In this Appendix, we investigate how sensitive the FLGI is to the choice of prior

on the location parameter µk when the variance is assumed known. Ultimately, the

choice of prior on µk determines which GI we start the allocation rule with. The

minimum amount of information we can assume, a priori, in order to initiate the GI

policy is n0
k = 1 (known variance case) and n0

k = 2 (unknown variance case) since the

GI is undefined for n0
k = 0. This gives rise to a normal prior with large variance (see

Figure 6.7.2) which can be used as a so-called ‘non-informative’ prior (Spiegelhalter

et al., 2004, p. 62). All of the results presented thus far correspond to this ‘non-

informative’ prior so that we can report the effects on patient response and other

relevant statistical properties of the FLGI alone, without the influence of additional

prior information. However, we now turn our attention to using different priors in

conjunction with the FLGI. We use the results for the ‘non-informative’ prior (in

(i) of Table 6.7.3) as a reference, and therefore refer to it as a reference prior from

hereon (in keeping with the terminology used in Spiegelhalter et al. (1994, 2004), for

example).

Taking the two-armed example from Section 6.3.2 (but now assuming known vari-

ance), we follow the suggestion provided in Spiegelhalter et al. (2004, Chapter 5)

and consider two archetypal priors on µ1, namely, the sceptical and enthusiastic prior

(with the reference prior on µ0).

The sceptical prior attempts to formalise the belief that large treatment differences

are unlikely. In particular, the sceptical normal prior on µ1 is centred around the (null

hypothesis) value of 0.155 with only a small probability, say 5%, that the true value

exceeds the alternative hypothesis value of 0.529, i.e. P(µ1 > 0.529) = 0.05. This

corresponds to a prior distribution of µ1 ∼ N
(

0.155, 0.642

n0
1

)
, which has the following

property

− 0.64× z0.05√
n0

1

= 0.529− 0.155, (6.7.4)
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where n0
1 is the implicit (prior) sample size and z0.05 = −1.645 is the fifth percentile

of the standard normal distribution. Rearranging equation (6.7.4) gives n0
1 ≈ 8.

Intuitively, this is equivalent to having eight patients’ worth of information (with null

mean) available at the start of the trial, that is, approximately 11% of the trial sample

size expressing scepticism and showing no treatment difference. The performance

measures of our design when starting with this prior on the experimental arm are

shown in (ii) of Table 6.7.3 for all block sizes, b.

The enthusiastic prior, on the other hand, is centred on the alternative hypothesis

value of 0.529 (with the same variance as the sceptical prior) and specifies that there

is little evidence of no treatment effect a priori, i.e. there is a 5% chance of observing a

value less than the null mean of 0.155. This corresponds to the following normal prior

distribution µ1 ∼ N
(

0.529, 0.642

8

)
, which is equivalent to having already observed

eight ‘enthusiastic’ responses before the start of the trial. The corresponding results

when starting with this prior on the experimental arm are displayed in (iii) of Table

6.7.3.
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µ0 = µ1 = 0.155 µ0 = 0.155, µ1 = 0.529

b z1−α α E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.) 1− β E(p∗) (s.d.) RelETO% (s.d.) Bias (s.d.)

(i) Reference (n0
0 = 1) vs. Reference (n0

1 = 1)

1 1.991 0.053 0.500 (0.33) -0.06 (5.42) -0.00 (0.49) 0.229 0.882 (0.16) 41.69 (7.01) 0.22 (0.45)

2 1.969 0.051 0.500 (0.32) 0.34 (5.42) -0.00 (0.44) 0.270 0.878 (0.16) 41.27 (6.85) 0.19 (0.41)

4 1.949 0.046 0.502 (0.30) 0.32 (5.43) -0.00 (0.38) 0.313 0.870 (0.14) 40.30 (6.65) 0.15 (0.35)

6 1.911 0.048 0.499 (0.29) -0.03 (5.45) 0.00 (0.34) 0.360 0.861 (0.14) 39.38 (6.59) 0.11 (0.30)

9 1.864 0.049 0.498 (0.28) -0.15 (5.43) 0.00 (0.30) 0.423 0.848 (0.13) 38.14 (6.53) 0.08 (0.26)

12 1.825 0.050 0.502 (0.26) 0.11 (5.42) -0.00 (0.27) 0.478 0.834 (0.13) 36.68 (6.41) 0.06 (0.23)

18 1.766 0.051 0.502 (0.24) 0.14 (5.44) -0.00 (0.23) 0.565 0.807 (0.12) 33.72 (6.30) 0.04 (0.20)

36 1.682 0.050 0.500 (0.19) 0.26 (5.45) 0.00 (0.17) 0.712 0.714 (0.09) 23.25 (5.98) 0.01 (0.17)

(ii) Reference (n0
0 = 1) vs. Sceptical (n0

1 = 8)

1 2.004 0.051 0.470 (0.32) 0.25 (5.44) 0.07 (0.43) 0.427 0.844 (0.18) 37.72 (6.51) 0.22 (0.41)

2 1.953 0.050 0.479 (0.31) -0.37 (5.43) 0.05 (0.38) 0.491 0.833 (0.17) 36.22 (6.46) 0.17 (0.34)

4 1.913 0.050 0.484 (0.29) -0.21 (5.43) 0.04 (0.33) 0.538 0.820 (0.17) 34.96 (6.38) 0.13 (0.29)

6 1.886 0.049 0.491 (0.28) -0.49 (5.43) 0.03 (0.31) 0.565 0.811 (0.16) 33.92 (6.44) 0.10 (0.26)

9 1.856 0.051 0.494 (0.27) -0.26 (5.45) 0.02 (0.28) 0.590 0.800 (0.16) 32.92 (6.40) 0.08 (0.24)

12 1.844 0.049 0.497 (0.26) 0.27 (5.43) 0.02 (0.25) 0.597 0.788 (0.15) 31.44 (6.41) 0.07 (0.22)

18 1.792 0.051 0.499 (0.24) -0.20 (5.42) 0.02 (0.22) 0.650 0.771 (0.14) 29.61 (6.32) 0.05 (0.20)

36 1.715 0.052 0.483 (0.18) 0.24 (5.43) 0.01 (0.18) 0.710 0.717 (0.12) 23.69 (6.09) 0.02 (0.17)

(iii) Reference (n0
0 = 1) vs. Enthusiastic (n0

1 = 8)

1 1.964 0.047 0.315 (0.24) -0.00 (5.41) 0.14 (0.37) 0.176 0.920 (0.08) 45.86 (5.79) 0.24 (0.41)

2 1.908 0.052 0.323 (0.24) -0.44 (5.45) 0.13 (0.34) 0.234 0.911 (0.08) 44.80 (5.83) 0.20 (0.36)

4 1.892 0.049 0.329 (0.23) -0.02 (5.42) 0.11 (0.31) 0.275 0.902 (0.09) 43.88 (5.82) 0.17 (0.33)

6 1.872 0.050 0.332 (0.22) 0.24 (5.41) 0.10 (0.30) 0.313 0.896 (0.09) 43.38 (5.86) 0.15 (0.31)

9 1.864 0.048 0.337 (0.22) 0.15 (5.39) 0.09 (0.28) 0.348 0.887 (0.09) 42.32 (5.86) 0.13 (0.29)

12 1.834 0.052 0.338 (0.21) -0.10 (5.39) 0.08 (0.27) 0.388 0.878 (0.09) 41.37 (5.87) 0.12 (0.28)

18 1.804 0.054 0.338 (0.20) -0.19 (5.45) 0.07 (0.25) 0.444 0.865 (0.10) 39.83 (5.95) 0.10 (0.25)

36 1.761 0.050 0.324 (0.17) 0.08 (5.41) 0.05 (0.21) 0.515 0.836 (0.11) 36.62 (6.07) 0.05 (0.21)

Table 6.7.3: The effect of using archetypal priors on the performance of the FLGI
for a two-armed trial when σ2

k = 0.642 is assumed known, T = 72 and d = 0.995,
averaged over 50,000 trial replications.

Conclusions

The main conclusions to draw from these experiments are that when using the FLGI

in the known variance case with a sceptical prior on the experimental arm, the power
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of the design increases whilst the patient benefit measures decrease relative to the

corresponding results when starting with the reference prior. This is what we would

expect to observe because the sceptical prior implies that there is a 0.95 probability

that µ1 lies below 0.529 (as depicted in Figure 6.7.2) which is incorrect under H1, and

as such it provides the FLGI algorithm with a ‘false start’. Thus, it takes longer for

the design to correctly identify the best arm, resulting in fewer patients allocated to

the superior arm but a larger power due to less imbalance.

In contrast, when starting with an enthusiastic prior on the experimental arm,

the reverse happens (as shown in (iii) of Table 6.7.3); the power decreases whilst the

patient benefit measures increase (relative to starting with the reference prior). Again,

this is not surprising because the enthusiastic prior specifies that the most likely value

of µ1 is 0.529 (as illustrated in Figure 6.7.2). Under H1, this is correct and so it gives

the algorithm a ‘head start’ in the right direction meaning it identifies the superior

arm quicker. Thus, less allocations are made to the control arm resulting in more

imbalance and hence reduced power. Under H0, however, this prior specification on

the experimental arm is incorrect and so the FLGI incorrectly allocates fewer patients

to the control arm, as observed in (iii) of Table 6.7.3 (where the control arm is taken

to be the ‘superior’ arm under H0). This explains why only ≈ 33% of patients in the

trial are allocated to the control arm for all block sizes under H0. Fewer observations

on the control arm leads to an underestimation of µ̂0 and consequently the treatment

effect estimator under H0 exhibits bias. It is also worth noting that the variability in

the allocations decreases when using the enthusiastic prior (relative to the reference

prior) since, under H1, the observed data and prior information match which reduces

the uncertainty of the allocations.

Overall, our recommendation is to be very cautious when incorporating prior in-

formation into bandit-based designs such as the FLGI because it influences the speed

at which the design updates and favours an arm (depending on how informative the
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prior is). Since these designs are so dynamic anyway, there is not as much to gain

from using prior information as there may be with less responsive designs. If the

prior specification is correct, then the incoming data will further enhance the effect

of the prior and the design will favour the superior arm sooner, whereas if the prior is

misspecified, the bandit may spend more time in the exploration phase or degenerate

to allocating all patients to one arm. However, it is likely that the incoming data

during the trial will eventually dilute the effect of the misspecified prior. How long

the design takes to correct for the misspecification depends on the value of n0
k; the

greater its value, the more influence the prior will have. Therefore, if one wishes to

use prior information in conjunction with the FLGI, we suggest setting a small value

for n0
k.
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Figure 6.7.2: Sceptical and enthusiastic prior densities with the reference prior de-
picted in black. The sceptics’ probability that the true mean response is greater than
0.529 (the alternative value) is 0.05, shown by the blue shaded region. The enthusi-
asts’ probability that the true mean response is less than 0.155 (the null value) is also
0.05, shown by the green shaded region.



Chapter 7

Conclusions and Further Work

7.1 Summary and Contributions

This thesis connects two lines of work, namely, bandit methodology and clinical trial

design. In particular, we have proposed a range of clinical trial designs which are

based upon solutions to the multi-armed bandit problem (MABP) and thus share the

same principal goal of maximising patient benefit within the trial. However, each

design is intended to address a different issue that has been suggested as preventing

such bandit-based designs from being implemented in practice. Below, we briefly

outline each design in turn and highlight their main contributions. The main points

are also summarised succinctly in Table 7.2.1.

7.1.1 Chapter 3, CRDP

In Chapter 3, we proposed the constrained randomised dynamic programming (CRDP)

design, so called because we introduced: (i) a constraint to force a minimum number

of patients on each arm, and (ii) randomisation into an otherwise deterministic de-

sign based on the optimal dynamic programming (DP) solution. Several performance

measures of the proposed design were evaluated and compared to alternative designs

194
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through extensive simulation studies using a recently published trial as motivation.

For simplicity, a two-armed trial with binary endpoints and immediate responses was

considered. Simulation results for the proposed design showed that: (i) the percent-

age of patients allocated to the superior arm is much higher than in the traditional

fixed randomised design; (ii) relative to the optimal DP design, the power is largely

improved upon and (iii) it exhibits only a very small bias and mean squared error of

the treatment effect estimator.

7.1.2 Chapter 4, FCRDP

CRDP, as with most response-adaptive designs, hinges on the limiting assumption of

patient responses being available before allocation of the next patient. This is one of

the greatest challenges, both for clinical trial practice (Rosenberger et al., 2012) and

the bandit literature (Caro and Yoo, 2010). Therefore, in Chapter 4, not only do we

study the impact of delayed responses on CRDP, but we take it one step further by

extending the design for the fixed delay case (e.g. constant arrivals and fixed response

time). This design is referred to as FCRDP. Simulation results revealed that CRDP

continues to offer patient benefit (albeit less than in the immediate response case)

even when the information during each adaptation is reduced due to the delay. It

is therefore relatively robust to delayed responses. Nevertheless, implementation of

FCRDP in the same scenarios showed that there are worthwhile patient benefit gains

to be made, with minimal impact on the corresponding power, bias and mean squared

error, by utilising the pipeline data in the updates of the allocation probabilities.

7.1.3 Chapter 5, RCRDP

Having a fixed number of patients in the pipeline is only representative of a small

number of trials. Therefore, in Chapter 5, we extend the CRDP design to the most

general case so that it can be applied to a greater variety of trials which encounter
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a random number of patients in the pipeline (including those with random arrivals

or random response times, or both). This aptly takes the initialism RCRDP. When

implemented for a hypothetical trial with exponential inter-arrival times and a fixed

follow-up time, RCRDP was shown to perform very similarly to FCRDP with respect

to all performance measures.

Conclusion of DP-Based Designs

Overall, CRDP and its delayed variants (with suggested degree of randomisation

p = 0.9 and constraining ` = 0.15n) were found to strike a balance between the

two conflicting objectives of patient benefit (individual ethics) and power (collec-

tive ethics), which is indicative of a “good clinical trial design” (Lee et al., 2010)

and “properly chosen RAR method” (Du et al., 2015). By adjusting the constraint

and/or degree of randomisation, CRDP provides a continuum of designs with DP

and fixed randomisation at the extremes. As such, the design can be tailored to suit

the individual objectives of the trial and attain the most appropriate balance. This

greatly increases the prospects of a DP-based design being implemented in clinical

trial practice.

One of the main practical limitations of the aforementioned DP-based designs is

their associated computational expense (Jiang et al., 2013) which grows exponentially

with the patient horizon (Villar et al., 2015a; Ahuja and Birge, 2019). However, this

is not as prohibitive as it is commonly perceived to be in the literature (Jacko, 2019b,

Section 7.1) which emphasises the importance of collaboration between disciplines.

In particular, the recent survey by Jacko (2019b) demonstrates that a computer with

32GB RAM is able to optimally solve the two-armed Bernoulli bandit problem up

to a trial size of 1440 or 4440, depending on whether storage of the optimal allo-

cation policy is or is not required, respectively (see also Jacko, 2019a, for details of

implementation).
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The augmentation of the state space to include the delay parameters in the FCRDP

and RCRDP designs increases the computational complexity even further. Conse-

quently, such designs can only be applied to relatively small-scale trials. Nevertheless,

for rare disease settings, which is where we anticipate that our proposed designs are

most pertinent, this does not pose a serious problem. For example, a review by Bell

and Smith (2014) found that 67% of rare disease trials had 0–50 patients, 19% had

between 51–100 patients and only 14% had more than 100 patients (with just 1% over

500 patients). Therefore, even with the additional complexity caused by the delay,

our designs maintain computational feasibility for the most commonly encountered

sample sizes in rare disease trials. Moreover, the ideas from Jacko (2019a) could be

applicable and useful for developing a code that can solve the delayed model for larger

trials than those considered in this thesis.

7.1.4 Chapter 6, FLGI

Motivated by the fact that the “RAR literature dealing with continuous outcomes is

much smaller and less developed” (Hu and Rosenberger, 2006; Flournoy et al., 2013)

and “the generalisation of [RAR] features to the multiple arm setting has been less

explored” (Viele et al., 2020), we propose a RAR design for multi-armed trials with

continuous outcomes that are assumed to be normally distributed with unknown,

non-homogeneous variances. This design is based on the Gittins index (GI) solution

to the MABP, which we refer to as FLGI (the “FL-” indicative of its forward-looking

nature). Compared to the DP solution, this approach is much simpler to commu-

nicate and be understood by all parties involved in the drug development process,

including trial stakeholders, participants, etc. (Pallmann et al., 2018). Moreover, it

avoids the computational burden associated with DP-based designs, thus can easily

be implemented in multi-armed trials, for example.

In contrast to previous chapters, we implement the GI-based design in a group
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sequential setting. This ameliorates the logistical difficulties of having to update

the randomisation probabilities after each patient has been observed (Chappell and

Karrison, 2006), which is another main reason cited for the limited uptake of RAR

designs (Karrison et al., 2003; Wason et al., 2019).

We illustrate the proposed procedure by simulations in the context of phase II

cancer trials, and compare its performance against a variety of existing designs. Re-

sults show that there are efficiency and patient benefit gains of using RAR designs,

such as FLGI, with a continuous endpoint instead of artificially dichotomising to form

a binary one. These gains persist even if an anticipated low rate of missing data is

imputed online using an approach suggested in this chapter. The effect of varying the

prior information, as well as the discount factor, on the performance of FLGI is also

evaluated. Additionally, we demonstrate that protecting allocation to the control arm

continues to substantially improve patient benefit, whilst achieving similar power to

the traditional FR, in multi-armed trials with normal outcomes.1

7.1.5 Areas Covered

Collectively, we have covered a broad range of topics from DP policies to index policies,

two-armed trials to multi-armed trials, binary endpoints to continuous endpoints,

sequential designs to group-sequential designs, ‘non-informative’ priors to informative

priors, as well as the problem of missing data through either delayed responses or loss

to follow-up. These are central to the development and application of bandit-based

designs to clinical practice. However, not all of these issues have been covered by

any one design which leaves scope for many natural extensions. In particular: the

generalisation of the DP-based designs to endpoints other than binary, the evaluation

of the DP-based designs in multi-armed settings, the application of the DP-based

designs to a group-sequential setting, the incorporation of prior information into the

1Different control allocations for RAR designs in a binary response, multi-armed setting have
recently been compared in Viele et al. (2020).
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DP-based designs (by eliciting expert opinion or using historical data from a related

trial, for example, see Hampson et al., 2014), the incorporation of delayed responses

into the GI-based design, the extension of FLGI to other endpoints (e.g. exponential),

etc. Note that such practicalities can be taken into account by: (i) evaluating the

original design via a simulation study which allows for the practicality of interest

(as in Section 4.2 when exploring the impact of delays on CRDP, for example), or

(ii) extending the modelling framework to incorporate the required practicality (as

in Chapter 5 when extending the CRDP model to incorporate delayed responses, for

example).

Moreover, there are several remaining challenges that we have not addressed in

this thesis, some of which have already been highlighted within the relevant chapters

so we do not repeat them here. We therefore conclude this thesis by suggesting some

general ideas for further work which are applicable to all of the proposed designs.

7.2 Areas of Further Work

7.2.1 Joint Efficacy/Toxicity Outcome

Throughout this thesis, we have restricted attention to the efficacy outcome as an

indication of whether the treatment has been successful or not. However, in practice,

treatment toxicities should be monitored concurrently (Lee et al., 2012). For example,

what if a treatment is efficacious yet causes an adverse reaction in the patient; should

this treatment still be considered a success? This motivates the joint evaluation of

both efficacy and toxicity, particularly for trials testing treatments with a high risk of

severe adverse side effects such as oncology trials. An example of an RAR design based

on a joint efficacy/toxicity outcome is proposed by Ji and Bekele (2009). Adapting

the bandit-based allocation rules proposed in this thesis to reflect both efficacy and

toxicity outcomes remains an open problem.
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7.2.2 Multiple Outcomes

Furthermore, as stated in Kaibel and Biemann (2019), response-adaptive MAB ap-

proaches, such as those developed in this thesis, also have the potential to deter-

mine randomisation probabilities for diseases based on multiple outcomes of interest.

Within the multi-objective MAB literature, the linear scalarised function (Eichfelder,

2008), which transforms the vector of multiple outcomes into a single outcome, is

a popular approach because of its simplicity (Yahyaa and Manderick, 2015). This

would also allow for the outcome variables to be weighted according to their rele-

vance, for example. Whether this is applicable to the clinical trial setting is an area

to be explored.

7.2.3 Alternative Objective Functions

The standard bandit objective, which we have considered throughout this thesis, is

to maximise the expected total reward (i.e. treatment effectiveness) over the time

horizon. However, in a clinical trial context, this may not necessarily be the most

desirable option since “controlling multiple properties of a design may not be easily

achieved through a single utility function” (Zhang et al., 2019). For example, a

treatment which works best on average may also exhibit considerable variability, thus

causing adverse side effects for some patients. In this case, a treatment which is

less effective on average, but has a smaller variability so that its behaviour is more

consistent amongst patients, may be preferred. Therefore, it may be better to explore

alternative objective functions, such as the mean-variance model (Markowitz, 1952).

The mean-variance bandit problem focuses on the problem of selecting the arm which

effectively trades off its expected reward with its variability. Two algorithms have

been proposed by Sani et al. (2012) to solve the mean-variance bandit problem and

it would be interesting to evaluate their performance in the clinical trial setting.

Other objectives that could be incorporated are economical (e.g. the cost of treat-
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ment, see Pertile et al. (2014) and Chick et al. (2017)), quality of life measures such

as invasiveness (e.g. implications of surgical intervention versus a vaccination), or

duration (e.g. is it better to undergo surgery once or receive life-long medication?).

7.2.4 Incorporation of Covariates

Our proposed designs were formulated under the assumption that patients allocated

to the same treatment will have the same expected response. However, in practice this

may be unreasonable if there are certain covariates (such as age and gender) which

influence their response (Zhang et al., 2007), for example. In this case, it may not

be appropriate to use responses from all preceding patients to determine the current

patient’s randomisation probability since only a particular subset of the available

responses may be clinically relevant. This motivates the use of covariate-adjusted

RAR which generalises RAR to include a patient’s covariate profile (Rosenberger and

Lachin, 2016). More specifically, this means that the randomisation probabilities will

not only depend on the history of patient responses, but also on the covariate infor-

mation of previous patients and the current patient. Hence, different randomisation

probabilities will be used for different patient subgroups (Meurer et al., 2012). This

contributes to the personalisation of treatment allocation during the trial, with more

patients receiving the treatment most appropriate for them (Qiao et al., 2019). As

increasing numbers of biomarkers are being identified, particularly in cancer research,

personalised medicine is gaining considerable attention, and hence there is a growing

need for novel trial designs which can make use of this additional information. Con-

sequently, how to incorporate covariate information into the proposed designs forms

a particularly topical and promising area of further research.
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7.2.5 Accounting for Patient Drift

Continuing with the theme of how to adequately reflect patient heterogeneity within

the proposed designs raises the question of how to implement such designs in the pres-

ence of underlying time trends caused by a systematic change in patient characteristics

during the trial. The possibility of so-called patient drift is another major criticism

of using RAR (see Rosenberger et al., 2012, Section 4.3) since if this is not taken into

consideration, the parameter estimates may be biased which would erroneously im-

balance the treatment allocation and inflate the type I error (e.g. Thall et al., 2015).

Sequential tests accounting for linear time trends have been proposed and investigated

in Coad (1991a,b), and the effect of time trends on several response-adaptive rules

has been examined in Coad (1992).

Time trends are more likely to occur in trials with a long duration, such as rare

disease trials in which the recruitment period typically extends over a very long time

(Villar et al., 2018). Since the rare disease setting is where the proposed bandit-based

designs are deemed to be most applicable, it would be useful to first investigate the

impact of time trends on these designs before suggesting how this could be accounted

for. This could also combine with the previous area of further research by including

a particular time trend as a covariate (see e.g. Rosenberger et al., 2001a).

7.2.6 Adding/Dropping Arms

“MABs offer the flexibility to add further treatments easily at any point in time”

(Kaibel and Biemann, 2019). Therefore, further extensions could also explore the

performance of bandit-based designs when additional arms are added to the trial.

This would be relatively straightforward to implement for the GI-based design since

the GI is independent of the number of arms (Villar et al., 2015a). Similarly, the in-

corporation of early stopping rules (for efficacy or futility) (see e.g. Du et al., 2015; Lee

et al., 2010) and optimal stopping times (see e.g. Chick et al., 2017) could potentially
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be investigated.

7.2.7 Dose-Finding Trials

Another direction for future research is applying and extending the concepts covered

in this thesis to the context of dose-finding trials, in which the primary goal is to

find the maximum tolerated dose (MTD) of a treatment. In dose-finding trials, the

different arms represent different dose levels of a treatment, and hence the arms are

now correlated. This induces additional computational complexity into the associated

MABP (relative to the classic MABP with independent arms) which is prohibitive in

most practical situations. However, since dose-finding trials are typically small in

size, the additional computational complexity may be manageable in this context. A

framework for dose-finding trials using the theory of bandit problems was suggested

by Leung and Wang (2002), and generalised to include multiple outcomes and early

termination by Fan and Wang (2006). More recently, the dose-finding problem has

also been posed as a MABP in Kano et al. (2019) and Aziz et al. (2019). In this

context, the trade-off is between finding the MTD and treating as many patients as

possible with the MTD (whilst avoiding allocation to toxic doses).

It is hoped that the ideas raised in this thesis will prompt further development of the

proposed designs and encourage more collaboration between researchers and practi-

tioners.



Proposed design Solution method Simulation setting Main limitations Main issues addressed

CRDP Dynamic Two arms, Immediate responses, Lack of randomisation,
Constrained randomised programming binary endpoint, computationally intensive, insufficient power,
dynamic programming sequential logistically difficult biased estimates

FCRDP Dynamic Two arms Sequential arrivals & Impact of delay,
CRDP adjusted for programming binary endpoint, fixed response time, extension to
fixed pipeline sequential computationally intensive, fixed delays

logistically difficult

RCRDP Dynamic Two arms, Computationally intensive, Extension to
CRDP adjusted for programming binary endpoint, logistically difficult random delays
random pipeline sequential

(C)FLGI Gittins Two & multiple Immediate responses Computational complexity,
(Controlled) Forward- index arms, normal lack of randomisation,
looking Gittins index endpoint with continuous endpoints,

unknown variance, dichotomisation, missing
group sequential data, effect of prior info.

Table 7.2.1: Overview of proposed designs.
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Kelly, F. P. (1981). Multi-armed bandits with discount factor near one: The Bernoulli

case. The Annals of Statistics , 9(5), 987–1001.

Kim, E. S., Herbst, R. S., Wistuba, I. I., Lee, J. J., Blumenschein, G. R., Tsao, A.,

Stewart, D. J., Hicks, M. E., Erasmus, J., Gupta, S., Alden, C. M., Liu, S., Tang,

X., Khuri, F. R., Tran, H. T., Johnson, B. E., Heymach, J. V., Mao, L., Fossella,

F., Kies, M. S., Papadimitrakopoulou, V., Davis, S. E., Lippman, S. M., and Hong,

W. K. (2011). The BATTLE trial: Personalizing therapy for lung cancer. Cancer

Discovery , 1(1), 44–53.

Korn, E. L. and Freidlin, B. (2011). Outcome-adaptive randomization: Is it useful?

Journal of Clinical Oncology , 29(6), 771.

Kuleshov, V. and Precup, D. (2000). Algorithms for the multi-armed bandit problem.

Journal of Machine Learning Research, 1, 1–32.

Langenberg, P. and Srinivasan, R. (1981). On the Colton model for clinical trials

with delayed observations — Normally-distributed responses. Biometrics , 37(1),

143–148.

Langenberg, P. and Srinivasan, R. (1982). On the Colton model for clinical trials

with delayed observations — Dichotomous responses. Biometrical Journal , 24(3),

287–296.



BIBLIOGRAPHY 218
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